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Abstract

This paper examines the equilibrium of portfolio under insurance con-
straints on the terminal wealth. We consider a single period economy in
which agents search to maximize the expected utilities of their terminal
wealths. Three main classes of financial assets are considered: a riskless
asset (usually the bond), a risky asset (the stock) and European options
of all strikes (corresponding to financial derivatives). Both partial and
general optimal financial equilibria are determined and analyzed for quite
general utility functions and insurance constraints. We introduce also the
notion of compensating variation to quantify the monetary loss of not
having the true optimal portfolio profile, for the clients and also for the
bankers.
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1 Introduction

The structured financial products have been introduced to enhance portfolio
returns. The demand for such products has quickly increased. They can allow
investors to benefit from the risky asset rises, while being exposed only partially
to market drops. The combination of basic assets gives birth to new assets with
very specific characteristics whose evaluation appears very complex. During the
periods of financial markets decline and strong volatilities, the demand in favour
of the structured products in particular those with a protection clause on cap-
ital growths sharply.1Portfolio insurance payoff provides for a benefit payable
at maturity. It is designed to give the investor the ability to limit downside
risk while allowing some participation in upside markets. Such methods allow
investors to recover, at maturity, a given percentage of their initial capital, in
particular in falling markets. This payoff is a function of the value at maturity
of some specified portfolio of common assets, usually called the benchmark. As
well-known by practitioners, specific insurance constraints on the horizon wealth
must be generally satisfied. For example, a minimum level of wealth and some
participation in the potential gains of the benchmark can be guaranteed. How-
ever, institutional investors for instance may require more complicated insurance
contracts.

The two main standard portfolio insurance strategies are the Constant Pro-
portion Portfolio Insurance (CPPI) and the Option Based Portfolio Insurance
(OBPI). The CPPI has been introduced by Perold (1986) for fixed-income in-
struments and Black and Jones (1987) for equity instruments (see also Perold
and Sharpe, 1988). This portfolio strategy is based on a dynamic portfolio allo-
cation during the whole management period. The investor begins by choosing
a floor equal to the lowest acceptable value of his portfolio value. Then, at
any time, the amount (called the exposure) invested on the risky asset, is pro-
portional to the excess of the portfolio value over the floor, usually called the
cushion. The remaining funds are invested in cash, usually T-bills. The propor-
tional factor is defined as the multiple. Both floor and multiple depend on the
investor’s risk tolerance and are exogenous to the model. This portfolio strategy
implies that, if the cushion value converges to zero, then exposure approaches
zero too. In continuous time, this prevents portfolio value from falling below
the floor, except if there is a very sharp drop in the market before the investor
can modify his portfolio weights.

The optimality of such dynamic portfolio strategies can be based on the
literature on general portfolio optimization. In this framework, generally we

1 Indeed, the risk aversion plays a crucial role in the investors behavior. Taking account of
the investors psychology, of their cognitive biases and emotional reactions, behavioral finance
provides a specific framework for the study of these products. Thus several studies have been
published on this research topic. For instance, Hens and Riger (2008) prove that the investor
will include more complex structured products than standard equities in his portfolio. Driessen
and Maenhout (2007) deal with optimal positioning problems, assuming either expected utility
or the CPT of Tversky and Kahneman (1992).
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consider an investor who maximizes the expected utility of his terminal wealth,
by trading in continuous time (see for example Cox and Huang, 1989; Cvitanic
and Karatzas, 1996). The continuous-time setup is also usually introduced to
study portfolio insurance (see for example, Grossman and Vila, 1989, Basak,
1995, and Grossman and Zhou, 1996). The key assumption is that markets are
complete: all portfolio profiles at maturity are perfectly hedgeable.

The OBPI, introduced by Leland and Rubinstein (1976), consists of a portfo-
lio invested in a risky asset S (usually a financial index such as the S&P) covered
by a listed put written on it. Whatever the value of S at the terminal date T ,
the portfolio value will be always greater than the strike K of the put. At first
glance, the goal of the OBPI method is to guarantee a fixed amount only at the
terminal date. In fact, if the financial market is frictionless, the OBPI method
allows one to get a portfolio insurance at any time. The OBPI is a particular
case of the optimal positioning problem which has been addressed in the par-
tial equilibrium context by Brennan and Solanki (1981) and by Leland (1980).
More generally, the literature about welfare gains by introducing options into a
economy has been initiated by Ross (1976) and extended by Hakansson (1978),
Breeden and Litzenberger (1978), Friesen (1979), Arditti and John (1980) and
Kreps (1982). The optimal design of optimal contracts has been also further
studied by Johnston and McConnell (1989) and Duffie and Jackson (1989).

The value of the portfolio is a function of the benchmark, in a one period
set up. An optimal payoff, maximizing the expected utility, is derived. It is
shown that it depends crucially on the risk aversion of the investor. Following
this approach, Carr and Madan (2001) consider markets in which exist out-
of-the-money European puts and calls of all strikes. As they mentioned, this
assumption allows to examine the optimal positioning in a complete market and
is the counterpart of the assumption of continuous trading. This approximation
is justified when there is a large number of option strikes (e.g. for the S&P500,
for example). Due to practical constraints, liquidity, transaction costs..., port-
folios are in fact discretely rebalanced. Such type of insurance strategy corre-
sponds to optimal portfolio strategies, under specific assumptions, as proved by
Bertrand et al. (2001a).2It can be shown that the optimal payoff (maximizing
the expected utility) depends crucially on the risk aversion and prudence of the
investor (see e.g. Eeckhoudt and Gollier, 2005; Bertrand and Prigent, 2010).

In both previous cases, only one type of economic agent is considered: the
buyer of portfolio insurance. But, who should buy and who should sell insured
portfolios? What is the impact of portfolio insurance on financial markets and
economies? Such important questions have been partially examined, through
equilibrium approach. They constitute the third main part of the research on

2Note that, in continuous-time, El Karoui, Jeanblanc and Lacoste (2005) prove that, under
a fixed guarantee at maturity, the Option Based Portfolio Strategy (OBPI) is optimal for quite
general utility functions (see also Jensen and Sorensen (2001) for a particular case).
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portfolio insurance. The study of the general equilibrium model of portfolio in-
surance has been examined by Basak (1995, 2002); Grossman and Zhou (1996);
Carr and Madan (2001). The usual debate about the effects of PI on financial
market dynamics is that they may affect market volatility and risk premium.
If the efficient market assumption is that equity’s volatility is only due to in-
formation flow, many practitioners and researchers argue that dynamic trading
strategies can increase stock market volatility, in particular PI method (see the
Brady report, 1988, about the market crash of October 1987). Brennan and
Schwartz (1989), Grossman and Zhou (1996) conclude that market volatility
is increased by PI, while, according to Basak (1995, 2002), market volatility
is decreased by PI. One explanation of these opposite findings is the differ-
ent assumptions about agent consumption: for example, Grossman and Zhou
(1996) assume that consumption takes place only at PI horizon; Basak (1995)
supposes that agents consume continuously. Furthermore, Basak (2002) proves
that general equilibrium conditions depend on assumptions about pure exchange
or production-type economies. For pure-exchange case, the market price always
increases whereas for the production case, the impact is state-dependent. Thus,
conclusions about PI and market dynamics (volatility and risk premium) are
rather mitigated.

More generally, concerning specifically the evaluation of the risk premium,
another stream of literature has recently emerged: the empirical evaluation of
the fair pricing of structured products. The analysis of the fair pricing of struc-
tured products aims at determining whether financial institutions benefit from
an additional premium with respect to a “fair value” when issuing structured
products and what is the size of this “excess” gain (between 1% and 5% or
beyond 10% as suggested by those who are critic about structured products
valuation?). This problem is rather involved, since we have to take account of
different specifications: types of the products (complexity and large diversity:
see Das, 2000); impact of financial market parameters such as the implied volatil-
ity; issuers (retail or private banks for instance). . . For example, Stoimenov and
Wilkens (2005) examine the pricing of equity-linked structured products in the
German market. Using daily closing prices of a large variety of structured prod-
ucts, they compare their actual values to theoretical ones derived from the prices
of options traded on the Eurex (European Exchange). They conclude that, for
most of the products, large implicit premiums are charged by the issuers.

In this paper, first we determine the optimal financial equilibrium in the op-
timal positioning framework, under insurance constraints. Then, we investigate
if observed risk premium are too high, according to assumptions on financial
parameters. It can be argued that holders of insured portfolios are less exposed
to bearish markets than the issuers. First, in the partial equilibrium framework,
we analyze how investor attitudes towards risk determine what kind of insurance
is optimal for investors. Under a variety of modelling strategies, we determine fi-
nancial general equilibrium and optimal consumption-portfolio-wealth. Then we
analyze the competitive price of portfolio insurance, especially when additional
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guarantee constraints on both clients and issuers (the bankers) are introduced
through for instance risk management control. In this framework, we examine
whether risk premium of insured products increase under some given solvency
regulatory rules. To measure the premium, we use a quantitative measure in-
troduced by de Palma et al. (2009) and de Palma and Prigent (2008, 2009)
to determine the monetary loss of the investor when the true optimal portfolio
is not provided to the investor or to measure the monetary loss of the bank
when it must provide a portfolio that meets exactly the investor’s preferences.
It is based on the standard economic concept of compensating variation (CV).
If an investor with risk aversion γ and initial investment V0 can buy his optimal
portfolio, his expected utility is E[Uγ(V

∗
T );V0]. If this investor selects an opti-

mal portfolio among only those available, then he will get the expected utility

E[Uγ(V
∗(λ)
T );V0]. He will get the same expected utility provided that he invests

an initial amount Ṽ0 ≥ V0.

The paper is organized as follows. In Section 2, we introduce the modelling of
the financial market and provide the optimal portfolio profiles with and without
insurance constraints. We examine structured portfolios with payoffs defined as
functions of the risky asset (a financial stock index for example). An extension
of Carr and Madan (2001) is given by introducing insurance constraints on the
horizon wealth. Besides, markets can be incomplete. The insured optimal port-
folio is characterized for arbitrary utility functions, return distributions and for
any choice of a particular risk neutral probability if the market is incomplete.3

Basic examples are examined. In particular, the optimal portfolio is calculated
for CRRA utility functions. In Section 3, we determine the optimal insured
portfolio profiles in a general equilibrium framework. We provide in particu-
lar the equilibrium risk-neutral probability. Section 4 deals with compensating
variations that allow to measure the insurance premium. We illustrate this ap-
proach for two kinds of agents: the bankers and their clients. We provide the
numerical illustration of the theoretical solutions for banker and investor hav-
ing both CRRA utilities.4 We deal with three main cases: for the first one, the
investor is assumed to have no direct access to the financial option market. The
resulting suboptimality of his standard buy-and-hold portfolio may lead him to
bear (theoretically) an additional cost to can include derivatives in his portfolio
in order to better fit his true optimal portfolio profile. The second case examines
the banker’s compensating variation due to more risk implied by the investor’s
guarantee and/or the non optimality of his resulting constrained portfolio with
regards to his own risk aversion. Finally, we choose the standard OBPI strategy
as benchmark to both evaluate the investor’s and banker’s compensating varia-
tions. Finally, Section 6 contains the main conclusions. Some of the proofs and
most of the figures are gathered in appendices.

3The constraint on the terminal wealth is much more general than previous works about
insurance portfolio and so can be applied to all practical cases.

4The other cases (logarithm and CARA) can be illustrated as well. However, CRRA
utilities generally fit better the true utility. Additionally, as shown for the CRRA case, the
numerical values of the compensating variations are sufficiently significant to illustrate them.
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2 Individual optimal portfolio profiles

2.1 The financial model

We assume the existence of two basic financial assets: the bond B and the stock
S (a financial index such as for example the S&P 500, which is considered as
a benchmark)). We suppose that the investor determines an optimal payoff h
which is a function defined on all possible values of the assets (B,S) at maturity.
If the market is complete, this payoff can be achieved by the investor. The
market can be complete for example if the financial market evolves in continuous
time and all options can be dynamically duplicated by a perfect hedging strategy.
It can be complete if for example, in a one period setting, European options of
all strikes are available on the financial market. In this setting, the inability
to trade continuously potentially induces investment in cash, asset B, asset S
and all European options with underlyings B and S (if cash and bond are non
stochastic, only European options on S are required).
The asset prices are calculated under risk neutral probabilities. If markets

exist for out-of-the-money European puts and calls of all strikes, then it implies
the existence of an unique risk-neutral probability that may be identified from
option prices (see Breeden and Litzenberger, 1978). Otherwise, if there is no
continuous-time trading, generally the market is incomplete and a one partic-
ular risk-neutral probability Q is used to price the options. It is also possible
that stock prices change continuously but the market may be still dynamically
incomplete. Again, it is assumed that one risk-neutral probability is selected.
Assume that prices are determined under such measure Q. Denote by dQ

dPi
the

Radon-Nikodym derivative of Q with respect to the historical probability Pi
corresponding to investor i beliefs. Denote by Mi,T the density

dQ
dPi
.

2.2 Spanning

Proposition 1 The payoff h associated to an investment strategy can be com-
puted by the following approach. As proved in Carr and Madan (2001), it is
possible to explicitly identify the position that must be taken in order to achieve
a given payoff h that is twice differentiable.h is duplicated by an unique ini-
tial position of h(S0) − h′(S)S unit discount bonds, h′(S) shares and h(K)dK
out-of-the-money options of all strikes K:

h(S) = [h(S0)− h′(S0)S0]B0 + h′(S0)S

+

∫ S0

0

h′′(K)(K − S)+dK +

∫ ∞

S0

h′′(K)(S −K)+dK.

The initial portfolio value satisfies:

V0 [h(.)] = [h(S0)− h′(S0)S0]B0 + h′(S0)S0

+

∫ S0

0

h′′(K)P0(K)dK +

∫ ∞

S0

h′′(K)C0(K)dK,
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where P0(K) and C0(K) denote respectively the initial put and call prices.
We deduce that the initial value is also given by:

V0 [h(.)] = B0

∫ ∞

0

h(K)q(K)dK,

where B0q(K) corresponds to the state price density.

2.3 The non insured portfolio

Recall the results of Brennan and Solanki (1981) or Carr and Madan (2001).
Consider an investor i (i ∈ {1, ..., n}) who wants to maximize the expected utility
of his random terminal wealth Vi,T for a given horizon T , under the probability
Pi. This latter one corresponds to his beliefs about risky asset return probability
(Pi = Pi,ST ). We denote by fi(s) its probability density function (pdf).
The investor’s initial wealth Vi,0 is composed of a weight wBi invested on the

bond and a weight wSi invested on the stock. Denote respectively by B0 and S0
the initial financial asset values.
The investor’s utility function Ui is supposed to be increasing, concave and

twice-differentiable. Suppose as in Karatzas, Lehoczky, Sethi and Shreve (1986)
that the marginal utility U ′i satisfies:

lim0+U
′
i = +∞ and lim+∞U

′
i = 0.

Denote by Ji the inverse of the marginal utility U
′
i .

Due to the no-arbitrage condition, the budget constraint corresponds to the
following relation :

Vi,0 = e−rTEQ[hi(ST )] = e
−rTEPi [hi(ST )Mi,T ],

where Mi,T denotes the Radon-Nikodym density of the risk-neutral probability
Q with respect to the statistical probability Pi.
The investor has to solve the following optimization problem:

MaxhiEPi [Ui(hi(ST )] under Vi,0 = e
−rTEPi [hi(ST )Mi,T ]. (1)

To simplify the presentation of the main results, we suppose as usual that the
function h fulfils: ∫

R+
h2i (s)fi(s)(ds) <∞.

It means that h ∈ L2(R+,Pi(ds)) which is the set of the measurable functions
with squares that are integrable on R+ with respect to the distribution Pi.

Introduce the functional ΦUi which is associated to the utility function Ui
and defined on the space L2(R+,Pi(ds)) by:

For any X ∈ L2(R+,Pi(ds)), ΦUi(X) = EPi [U(X)].

ΦUi is usually called the Nemitski functional associated with Ui (see for
example Ekeland and Turnbull (1983) for definition and basic properties).
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Proposition 2 Introduce the conditional expectation ofMi,T under the σ-algebra
generated by ST . Denote it by gi. Assume that gi is a function defined on the
set of the values of ST and g ∈ L2(R+,Pi(ds)). Then, the optimization problem
is reduced to:

Maxh∈L2(R+,Pi(ds))

∫

R+
[Ui(hi(s))]fi(s)ds, (2)

under Vi,0 =

∫

R+
hi(s)gi(s)fi(s)ds.

We deduce the optimal payoff h∗i is given by:

h∗i = J(λigi),

where λi is the scalar Lagrange multiplier such that V0 =
∫
R+
Ji(λigi(s))gi(s)fi(s)ds.

Proof. It is similar to the proof in Carr and Madan (2001). From the
properties of the utility function Ui, the Nemitski functional ΦUi is concave and
differentiable (the Gâteaux-derivative exists) on L2(R+,Pi(ds)). Additionally,
the budget constraint is a linear function of hi. Thus, there exists exactly one
solution h∗i . It corresponds to the solution of

∂Li
∂h∗i

= 0 where the Lagrangian Li
is defined by:

Li(hi, λi) =
∫

R+
[Ui(hi(s))]fi(s)ds+ λi

(
Vi,0 −

∫

R+
hi(s)gi(s)fi(s)ds

)
. (3)

The parameter λi is the Lagrange multiplier associated to the budget constraint.
Therefore, h∗i satisfies: U

′
i(h

∗
i ) = λigi. Thus, h∗i = Ji(λigi).

2.4 The insured portfolio

This section is a generalization of Prigent (1999) and Bertrand, Lesne and Pri-
gent (2001) to the case of heterogeneous beliefs. Now, the investor introduces
a specific guarantee, which can be imposed for example by institutional con-
straints or if he searches for an additional insurance against risk. Such guar-
antee can be modelled by letting a function hi,g defined on the possible values
of the benchmark ST : whatever the value of ST , the investor wants to get a
final portfolio value above the floor hi,g(ST ). For instance, if hi,g is linear with
hi,g(s) = αis+βi, then, when the benchmark falls, the investor is sure of getting
at least the amount βi (equal to a fixed percentage of his initial investment) and
if the benchmark rises, he can capitalize on the rises at a percentage αi.

The optimal payoff with insurance constraints on the terminal wealth is
solution of the following problem:

MaxhiEPi [Ui(hi(ST )]

with Vi,0 = e−rTEPi [hi(ST )Mi,T ],

and hi(ST ) ≥ hi,g(ST ). (4)
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Proposition 3 The optimal payoff h∗∗i can be determined by introducing the
unconstrained optimal payoff h∗i associated to the modified coefficient λi,c (i.e.
h∗i = Ji(λcgi) ). λi,c can also be considered as a Lagrange multiplier associated
to a non insured optimal portfolio but with a modified initial wealth. Indeed,
when h∗i is greater than the insurance floor hi,g, then h

∗∗
i = h∗i . Otherwise,

h∗i = hi,g. However, the payoff is usually a continuous function of the values
of the benchmark like any linear combination of standard options. In that case,
the optimal payoff is given by:

h∗∗i =Max(hi,g, h
∗
i ). (5)

Corollary 4 The optimal insured portfolio corresponds to a combination of the
guaranteed amount hi,g and of a put written on the optimal non insured portfolio
h∗i with strike hi,g:

h∗∗i = hi,g +Max(h∗i − hi,g, 0). (6)

Note that, if both hi,g and h
∗
i are increasing, then the optimal payoff h

∗∗
i is

also an increasing function of the benchmark.

2.5 Properties of the optimal payoffs

The properties of the optimal payoff h∗i as function of the benchmark S can
be analyzed. Introduce the risk tolerance To,i(hi(s)) equal to the inverse of the
absolute risk-aversion:

To,i(hi(s)) = −
U ′i(hi(s))

U ′′i (hi(s))
. (7)

Corollary 5 h∗i is an increasing function of the benchmark ST if and only if
the conditional expectation gi of

dQ
dPi

under the σ-algebra generated by ST is
a decreasing function of ST . More precisely: assume that gi is differentiable.
From the optimality conditions, the derivative of the optimal payoff is given by:

h∗′i (s) =

(
− U

′
i(hi(s))

U ′′i (hi(s))

)
×
(
−gi(s)

′

gi(s)

)
= To,i(h

∗
i (s))

d

ds

(
Log

[
1

gi(s)

])
. (8)

Proof. Since the utility function Ui is concave, the marginal utility U
′
i is

decreasing, then Ji also, from which the result is immediately deduced.

Remark 6 In most cases gi is decreasing.

As it can be seen, h′i(s) depends on the risk tolerance. The design of the
optimal payoff can also be specified, in particular the concavity/convexity prop-
erty. For this purpose, we can examine the second-order derivative of the payoff.

Denote Yi(s) = −g
′

i(s)
gi(s)

. We deduce:

9



Corollary 7 Assume that gi is twice-differentiable. Then:

h′′i (s) = [T
′
o,i(h(s)) +

Y ′i (s)

Yi(s)2
]× [To,i(hi(s))Y 2i (s)]. (9)

Therefore, usually, the higher the tolerance to risk, the higher the second-
order derivative hi”(s).

2.6 Individual prices

Let Ki be the convex cone corresponding to the insurance constraint hi ≥ hi,0 .
Consider the following indicator function of Ki, denoted by δKi

and defined by:

δKi
(hi) =

{
0 if hi ∈ Ki
+∞ if hi /∈ Ki (10)

In the presence of insurance constraints, the Lagrangian (3) is given by:

Li(hi, λi) =
∫

R+
[Ui(hi(s))]fi(s)ds+λi

(
V0,i −

∫

R+
hi(s)gi(s)fi(s)ds

)
+δKi

(hi),

where the parameter λi is the Lagrange multiplier associated to the budget
constraint.
We deduce that the optimal payoff h∗∗i is solution of the following equation:

fi(s)

B0q(S)
U ′i [h

∗∗
i (s)] = λi + δKi

(11)

where λi is the scalar Lagrange multiplier such that V0 =
∫
R+
Ji(λigi(s))gi(s)fi(s)ds.

πi(s) =
fi(s)U

′
i [h

∗∗
i (s)]∫∞

0 B0fi(s)U ′i [h
∗∗
i (s)]

= q(S).

2.7 Basic examples

The previous properties are illustrated in next examples. In what follows, we as-
sume that the interest rate r is constant. The stock price evolves in a continuous-
time set up. The risky asset price (St)t follows a geometric Brownian motion
under investor i beliefs, which is given by:

St = S0exp
[
(µi − 1/2σ2i )t+ σiWt

]
. (12)

Notations:

θi =
µi − r
σi

, Ai = −
1

2
θ2iT +

θi
σi

(
µi −

1

2
σ2i

)
T,

ψi = eAi(S0)
θi
σi , κi =

θi
σi
.
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Recall that in the Black and Scholes model, the conditional expectation gi
of dQ
dPi

under the σ-algebra generated by ST is given by:

gi(s) = ψis
−κi .

In what follows, we illustrate the results for the base numerical case:

µ = 7%; r = 3%, σ = 20%;T = 5 years;S0 = 100;V0 = 1000; p = 1. (13)

We restrict the set of possible utility functions Ui to those which exhibit a
linear risk tolerance (LRT).5

To,i(v) = −
U ′i
Ui”

(v) = τ i + biv, (14)

where bi corresponds to cautiousness assumed to be non-negative. The portfolio
value is assumed to satisfy: v ≥ − τi

bi
so that the risk tolerance is always positive.

As the portfolio value converges to this lower bound, the tolerance tends to 0.
Therefore, there exists a floor equal to −τ i

bi
. As in Carr and Madan (2001), we

require Vi,0 ≥ B0

(
− τi
bi

)
which allows the portfolio value to reach this floor.

First, Equation (14) can be solved to determine the marginal utility. Sec-
ondly, by integrating, we deduce all possible utility types (up to positive linear
transformations).

2.7.1 The CARA case

Assume that the utility function of the investor is a CRRA utility: (it corre-
sponds to bi = 0).

Ui(x) = −
exp [−aix]

ai
, x > 0,

with ai =
1
τ i
> 0, from which we deduce Ji(y) = − ln[y]

ai
. The parameter ai

corresponds to the constant absolute risk aversion.
By using the previous general results about the optimization problem, we

deduce:
1) If there is no insurance constraint, the optimal payoff is given by:

h∗i (s) = Ji(λigi(s)) = −
1

ai
[ln(λi) + ln(ψi)] +

κi
ai
ln(s), (15)

where λi is the Lagrange parameter linked to the budget constraint.
Substituting the Lagrange parameter, we get:

h∗i (s) = Vi,0e
rT +

κi
ai

[
ln(s)−

∫ ∞

0

ln(s)gi(s)f(s)ds

]
. (16)

5As mentioned in Carr and Madan (2001), Cass and Stiglitz (1970) have proved that a
necessary condition to get the two-fund monetary separation is that investors have linear risk
tolerance. See also Gollier (2001) for more details about the choice of the utility function.
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2) If the insurance constraint is required then the optimal payoff must be
solution of:

MaxhiEPi

[
−exp [−aihi(ST )]

ai

]

Vi,0 = e−rTEQi [hi(ST )],

hi(ST ) ≥ hi,g(ST ). (17)

Then, we deduce that the optimal payoff with guarantee is given by:

h∗∗i =Max(hi,g, h
∗
i ), (18)

where h∗i is given in Relation (15) for an adequate initial investment Ṽi,0.
Thus, we face two main cases:
1) µi < r. In that case, the Sharpe type ratio κi is negative, which implies

that the optimal payoff is decreasing with respect to the risky asset.
2) µi > r. In that case, the Sharpe type ratio κi is positive, which implies

that the optimal payoff is increasing with respect to the risky asset.
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Figure 1: CARA Profiles
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2.7.2 The logarithm case

Assume that the utility function of the investor is a logarithmic utility: (it
corresponds to bi = 1)

Ui(x) = ln [τ i + x] , x > −ai,

with τ i > 0, from which we deduce Ji(y) =
1
y
− τ i.

The previous general results yield to the following result:
1) If there is no insurance constraint, the optimal payoff is given by:

h∗i (s) =
1

λigi(s)
− τ i =

1

λiψi
sκi − τ i, (19)

where λi is the Lagrange parameter linked to the budget constraint.6

Substituting the Lagrange parameter, we get:

h∗i (s) =
(
Vi,0e

rT + τ i
) 1
ψi
sκi − τ i. (20)

2) If the insurance constraint is required then the optimal payoff must be
solution of:

MaxhiEPi [ln [τ i + hi(ST )]]

Vi,0 = e−rTEQi [hi(ST )],

hi(ST ) ≥ hi,g(ST ). (21)

Then, we deduce that the optimal payoff with guarantee is given by:

h∗∗i =Max(hi,g, h
∗
i ), (22)

where h∗i is given in Relation (23) for an adequate initial investment Ṽi,0.
The optimal payoff is concave or convex according to conditions κi < 1 or

κi > 1.

2.7.3 The HARA case

The HARA case without additional guarantee constraint Assume that
the utility function of the investor is a HARA utility: (it corresponds to bi 
= 0
and bi 
= 1)

Ui(x) =
(x− x̂i)1−γi
1− γi

, x > x̂i,

with γi =
1
bi
and x̂i = − τibi .

6Note that in that case, it would be more convenient to restrict the set of all possibles
values of the risky asset.
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Figure 2: Logarithm Profiles

We deduce: Ji(y) = x̂i + y
1
γi .

The relative risk aversion is given by:

−xU”i(x)
U ′i(x)

= γi
x

(x− x̂i)
.

If x̂i = 0, the relative risk aversion is equal to the inverse of the risk tolerance:
γi =

1
bi
.

The CRRA case with an additional guarantee constraint Assume that
the utility function of the investor is a CRRA utility. This corresponds to
previous HARA case but with x̂i = 0.

Ui(x) =
x1−γi

1− γi
, x > 0,

from which we deduce Ji(y) = y
1
γi .

We apply the previous general results to solve the optimization problem.
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Then, if there is no insurance constraint, the optimal payoff is given by:

h∗i (s) =
Vi,0e

rT

∫∞
0 gi(s)

1−γi
−γi fi(s)ds

× gi(s)
−1

γi . (23)

Therefore, h∗i (s) satisfies:

h∗i (s) = di × smi with di = ciψ
1
γi

i and mi =
κi
γi
> 0. (24)

If the insurance constraint is required then the optimal payoff must be solu-
tion of:

MaxhiEPi

[
(hi(ST ))

1−γi

1− γi

]

Vi,0 = e−rTEQi [hi(ST )],

hi(ST ) ≥ hi,g(ST ). (25)

Then, we deduce:

Proposition 8 The optimal payoff with guarantee is given by:

h∗∗i =Max(hi,g, h
∗
i ), (26)

where h∗i is given in Relation (23) for an adequate initial investment Ṽi,0.

Corollary 9 Assume as usual that hi,g is increasing and continuous, then the
optimal payoff is an increasing continuous function of the benchmark at matu-
rity.

Corollary 10 If there is no insurance constraint, the concavity/convexity of
the optimal payoff is determined by the comparison between the risk-aversion
and the ratio κi =

µi−ri
σ2i

which is the Sharpe ratio divided by the volatility σ.

i) h∗i is concave if κi < γi.
ii) h∗i is linear if κi = γi.
iii) h∗i is convex if κi > γi.

Remark 11 As it can be seen, the graph of the optimal payoff changes from
concavity to convexity according to the increase of the risk-aversion of the in-
vestor. If for example, the insurance constraint is linear (hi,g(s) = αis+ βi), it
looks like the unconstrained case’s one, except when h∗i is equal to the constraint
hi,g. Consider the dynamically complete case where the stock price follows the
usual geometric Brownian motion. If we maximize the expected CRRA utility
of the difference between the portfolio value and the floor, we find (see Prigent
(2001)) that the CPPI method is optimal with a multiple mi equal to

µi−r

σ2i

1
γi
.

Again, the concavity/convexity of the optimal payoff depends on the comparison
between the Sharpe type ratio µi−r

σ2i
and the risk aversion.
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Figure 3: CRRA Decreasing Profiles

Due to bad financial performance, the investor search for high portfolio val-
ues for bearish market (for example, for ST ≤ 0.75 S0, the investor’s portfolio
return is higher than 35%). For high risky asset returns, he recovers exactly the
insured portfolio return, here equal to 1 (for example, for ST ≥ 1.35 S0).

Increasing payoff (µi > r)

Two main cases must be distinguished: the concave case and the convex
case.

- If κi < γi, h
∗∗
i is concave.
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Figure 4: CRRA Concave Profiles
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In this case, the investor has a significant relative risk aversion and/or the
financial market has not a good performance (its Sharpe type ratio is weak).
Therefore, a rather conservative investor searches for not too small returns when
the financial market is bearish. But, he has also to require a specific additional
guarantee if he wants to recover his initial capital at maturity. However, for
moderate bullish market, he does not make high benefits.

- If κi > γi, h
∗∗
i is convex.
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Figure 5: CRRA Convex Profiles

In that case, the investor has a moderate or weak relative risk aversion
and/or the financial market has a good performance (its Sharpe type ratio is
relatively high). Thus, a rather aggressive investor searches for the highest pos-
sible returns when the financial market is bullish. But, he has also to require
a specific additional guarantee if he wants to recover his initial capital at ma-
turity. However, for bearish or moderate bullish market, he receives only this
guaranteed amount.

For the special case κi = γi, the optimal portfolio is linear with respect to
the benchmark S. This case corresponds to the standard buy-and-hold strategy.
The investor’s portfolio does not involve any derivative asset.
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3 Optimal insured portfolio profiles in a general
equilibrium

In this section, we determine the optimal positioning and the security design
when the risk-neutral pricing is endogenous and based on market clearing con-
ditions. We extend previous results of Carr and Madan (2001) by introducing
general insurance constraints on the individual portfolios. In the seminal paper
of Leland (1980), it is proved that, when the investor has the same market’s
beliefs, then the optimal payoff is globally convex if and only if the investor’s
risk tolerance increases with his portfolio value more rapidly than the aggregate
investor’s risk tolerance increases with global market wealth. Under the assump-
tion of linear risk tolerance with identical cautiousness and log-normal beliefs
with same volatility, Leland (1980) proves that the investor’s optimal payoff is
globally convex if and only if he has a higher expected return than the financial
market. Carr and Madan (2001) show for example that, if the investor thinks
that the volatility is going to be high, then he will sell at-the-money options
while, if he thinks that the volatility is going to be small, then he will purchase
out-of-the money options. Benninga and Mayshar (2000) examine the demand
for options in a general equilibrium framework by agents having HARA utility
functions. They prove that heterogeneity in the degree of relative risk aversion
among investors implies that the representative agent has a decreasing relative
risk aversion. They show that the Black-Scholes formula does no longer hold
and that all options are overpriced with respect to the Black-Scholes prices.
Franke et al. (2000) prove also that background risk can potentially explain
option demand rather than heterogeneity in preferences.

In what follows, we determine the optimal payoffs given the utility functions,
the insurance constraints, the bond and asset prices and the probability beliefs.
However, the option prices are determined endogenously. The agents must trade
so that in particular they exchange their derivatives position. This is the option
market clearing position.
Consequently, we have the two following market clearing conditions:

n∑

i=1

Vi,0 = S0 +B0 and
n∑

i=1

hi(S) = αS + βB, (27)

which implies
n∑

i=1

h′i(S) = α and zero-net supply on the option markets. Para-

meters α and β correspond respectively to the shares of the stock market S and
the bond market B. As in Carr and Madan (2001), we can set for simplicity:
α = 1 and β = 1.7

7However, when dealing with contract between specific agents such as a financial institution
(“the banker”) and his customer (“the investor”), we can impose for instance that the initial
stock position is null (see next section that deals with compensating variations with possible
initial risk-neutral hedging condition imposed to the banker). This point of view is more
microeconomics than the assumption α = β = 1, for which we assume implicitly that we
involve all financial isntitutions together with their clients.
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From individual expected utility maximization, we can derive the general
financial equilibrium properties in this static economy.

3.1 The equilibrium risk-neutral probability

The optimal positioning of a given investor is mainly based on the attributes of
this agent. The influence of the other investors is summarized by the risk-neutral
density that take account of their preferences and beliefs. In what follows, we
consider an economy in which several investors optimize simultaneously their
respective portfolio profiles. The option prices are no longer taken as given.
It implies that the risk-neutral density q(.) must be determined endogenously.8

This latter one must satisfy the bond pricing condition:

B0

∫ +∞

0

q(s)ds = B0, (28)

which is equivalent to:

∫ +∞

0

gi(s)ds = 1 (gi(.) is a pdf).

We suppose as in Carr and Madan (2001) that bonds and options are in zero
net supply. Thus, in the aggregate, only the stock is held:

n∑

i=1

hi(ST ) = ST . (29)

The previous conditions imply that the risk-neutral expected return on the
stock is equal to the riskless rate. Indeed, since each investor is endowed with δi
shares with

∑n
i=1 δi = 1 and that V0,i = δiS0, we deduce that:

∑n
i=1 V0,i = S0.

Using budget conditions, we get:

∫ +∞

0

B0

n∑

i=1

hi(s)q(s)ds = S0,

from which we conclude that:

B0

∫ +∞

0

sq(s)ds = S0 (no-arbitrage condition). (30)

We take S0 as given and search for the risk-neutral probability density q(.),
the bond price and the optimal portfolio payoffs. In order to determine the

8Recall that the risk-neutral density is equal to:

q(s) = gi(s)fi(s),

where fi(.) is the pdf of the risky asset value ST under the statistical probability P and that
gi(.) is the pdf of the Radon-Nikodym density of the risk-neutral probability.
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risk-neutral probability density at equilibrium, recall that the optimal portfolio
profiles with insurance constraints are given by:

h∗∗i (s) = hi,g(s) +Max [h∗i (s)− hi,g(s), 0] , (31)

where hi,g denotes the guaranteed payoff and h
∗
i (s) corresponds to the optimal

payoff without insurance constraint (but with a modified initial wealth). From
Relation (8), the payoff h∗i (s) is given by:

d

ds
[h∗i (s)] = Ti,o(h

∗
i (s))

d

ds
ln

[
fi(s)

q(s)

]
. (32)

Thus, assuming that the guaranteed payoff hi,g is differentiable,9 the deriv-
ative of the optimal payoff with insurance constraint exists10 and is given by:

d

ds
[h∗∗i (s)] =

d

ds
[hi,g(s)] if h

∗
i (s) < hi,g(s), (33)

and (34)

d

ds
[h∗∗i (s)] = Ti,o(h

∗
i (s))

d

ds
ln

[
1

gi(s)

]
if h∗i (s) > hi,g(s). (35)

Therefore, summing over i, we get:

n∑

i=1

d

ds
[h∗∗i ] (s) =

n∑

i=1

Ti,o(h
∗
i (s))

[
d

ds
ln [fi(s)]−

d

ds
ln [q(s)]

]
I{h∗i (s)>hi,g(s)}+

d

ds
[hi,g(s)] I{h∗i (s)<hi,g(s)}

Consequently, since
n∑

i=1

d
ds
[h∗∗i ] (s) = 1, we get:

d

ds
ln [q(s)] =

−1 +
n∑

i=1

Ti,o(h∗i (s))
[
d
ds
ln [fi(s)]

]
I{h∗i (s)>hi,g(s)} +

d
ds
[hi,g(s)] I{h∗i (s)<hi,g(s)}

n∑

i=1

Ti,o(h∗i (s))I{h∗i (s)>hi,g(s)}

.

(36)
Solving (36), we deduce:

9For the standard case, its derivative is nul since it is constant.
10There exists only a finite set of values s̃ at which h∗∗i is non differentiable. It corresponds

to the case: h∗i (s̃) = hi,g(s̃). Generally, there exists only one such point s̃. However, under
usual assumptions on the existence of a pdf for the risky asset, this point has a nul probability,
so that h∗∗i (.) is differentiable almost everywhere wit respect to ST .
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Proposition 12 The risk-neutral density q is given by:

For any s ∈ ∪ni=1 {h∗i (s) > hi,g(s)} , q(s) = q(0) exp


−

s∫

0

dx

T (x)


×

exp



s∫

0

n∑

i=1

(
Ti,o(h

∗
i (x))

T (x)

[
f ′i(x)

fi(x)

]
I{h∗i (x)>hi,g(x)} +

h′i,g(x)

T (x)
I{h∗i (x)<hi,g(x)}

)
dx




(37)
where T (.) is the total risk tolerance for all payoffs higher than the respective
guarantees of all investors, that is:

T (s) =
n∑

i=1

Ti,o(h
∗
i (s))I{h∗i (s)>hi,g(s)}. (38)

Corollary 13 When there does not exist any (exogenous) insurance constraint,
we get the Carr and Madan (2001) formula:

q(S) = q(0) exp

[
−
∫ S

0

ds

To(s)

]
exp

[∫ S

0

n∑

i=1

Ti,o(h
∗
i (s))

To(s)

f ′i(s)

fi(s)
ds

]
, (39)

where To(s) =
n∑

i=1

Ti,o(hi(s)) denotes the sum of all individual tolerances.

Additionally, for homogeneous beliefs, the risk-neutral density price is given
by:

q(S) = q(0) exp

[
−
∫ S

0

ds

To(s)

]
exp

[∫ S

0

f ′(s)

f(s)
ds

]
. (40)

If we consider the standard guarantee case for which the insured payoff
corresponds to a constant percentage of the initial wealth piVi,0, then we get:

Corollary 14 If at least one of the insurance constraint is not binding (s ∈
∪ni=1 {h∗i (s) > piVi,0}) then

q(s) = q(0) exp


−

s∫

0

dx

T (x)


 exp



s∫

0

n∑

i=1

(
Ti,o(h

∗
i (x))

T (x)

[
f ′i(x)

fi(x)

]
I{h∗i (x)>piVi,0}

)
dx




(41)

Since the tolerance is defined on optimal payoffs that depend themselves on
the risk-neutral density q, the two previous relations do not provide explicit
expression for q.
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Remark 15 Note that, Relation (38) shows that the equilibrium risk-neutral
density is equal to the product of a factor corresponding to the total risk tolerance

(i.e. exp
[
−
∫ S
0

ds
To(s)

]
), and a factor reflecting the personal beliefs (called “the

market” view in Carr and Madan, 2001). Note that the first factor is a positive
decreasing function of the risky asset value ST which may induce a change in
the mean and add negative skewness. Carr and Madan (2001) shows that, if the
pdf f(s) is Lognormal and the risk tolerance is constant, then the risk-neutral
density q(s) does no longer belong to the family of Lognormal distributions but
is skewed to the left and have fatter left tails.

Remark 16 With (exogenous) insurance constraints, the risk-neutral density
is defined on ∪ni=1 {h∗i (s) > hi,g(s)}. This set of risky asset values ST corre-
sponds to the case for which at least one of the investors payoffs is above the
corresponding guaranteed level. Otherwise, all investors recover only their guar-
antee. Therefore, on ∩ni=1 {h∗i (s) < hi,g(s)} , due to market clearing conditions,

we must have
n∑

i=1

hi,g(s) = s. Thus, for example for fixed guaranteed amounts

corresponding to the respective insured proportions of initial wealths, we must

assume that
n∑

i=1

hi(ST ) = ST + BT . It means that the bond clearing condition

must be relaxed. Otherwise, one of the investor j must have a payoff such that

hj,g(s) = s −
n∑

i=1, �=j

hi,g(s), but such payoff does not generally correspond to

a true guarantee. Agent j bears the risk induced by the other investors. Note
also that if one agent j has no specific guarantee (i.e. hj,g(s) = −∞) then
∪ni=1 {h∗i (s) > hi,g(s)} = R+. Thus, Relation (37) allows to define the risk-
neutral density q for all risky asset values. 11

Remark 17 To compare the risk-neutral densities for the non-insurance and
insurance cases, we note that on the domain ∩ni=1 {h∗i (s) > hi,g(s)}, the risk-
neutral density has exactly the same form as in the no-insurance case. They
only differ by the levels of initial wealths. Indeed, for the insurance case, the
initial values of the payoffs h∗i (s) are smaller than the corresponding ones for the

no-insurance case. Thus, according to the monotonicity of the ratio
Ti,o(h

∗

i (s))
To(s)

with respect to the initial investment, we can deduce if for example, the risk-
neutral density for the insurance case is higher or smaller than the risk-neutral
density for the no-insurance case. Note that, when the risk tolerances are con-
stant (CARA case), they are equal on the domain ∩ni=1 {h∗i (s) > hi,g(s)}, which
corresponds usually to rises of the risky asset.

11See next section about the notion of compensating variations, in which we assume for
example that one agent ("the banker") bears this risk. Thus, we relax the bond clearing
condition to avoid potential too high losses.

22



3.2 The optimal portfolio profiles at the equilibrium

Substituting Relation (37) into Relation (34), we deduce:

Proposition 18 The optimal portfolio profiles at the equilibrium are given by:

d

ds
[h∗∗i (s)] =

if h∗i (s) < hi,g(s),
d

ds
[hi,g(s)] ,

and, if h∗i (s) > hi,g(s),

Ti,o(h
∗
i (s))

T (s)
+ Ti,o(h

∗
i (s))× (42)


d ln fi(s)

ds
−

n∑

j=1

(
Ti,o(h∗j (s))

T (s)

d ln fi(s)

ds
I{h∗j (s)>hj,g(s)} +

h′j,g(s)

T (s)
I{h∗j (s)<hj,g(s)}

)


For the non-insurance case, we recover the Carr and Madan (2001) formula:

h∗i (s) =
Ti,o(hi(s))

T (s)
+ Ti,o(hi(s))×

(
d ln fi(s)

ds
−

n∑

i=1

Ti,o(hi(s))

To(s)

d ln fi(s)

ds

)
.

(43)
The first term is due to the investor’s risk tolerance relative to all the in-

vestors. The second term involves the own investor’s risk tolerance and the
difference between the investor’s belief and a risk tolerance weighted average of
the beliefs of other investors in the financial market.

Consider now the case of homogeneous beliefs (fi(s) = f(s)). We get:

Corollary 19 For homogeneous beliefs, we get: For h∗i (s) > hi,g(s),

d

ds
[h∗∗i (s)] =

Ti,o(hi(s))

T (s)
. (44)

Consider two investors with linear risk tolerances and with homogeneous
beliefs. Suppose that they have different cautiousness (otherwise, they will not
hold derivatives).

Example 1: Suppose that the two investors have opposite cautiousness:

Ti,1(v) = τ1 + bv, and Ti,2(v) = τ2 − bv.

Then, without insurance constraints, we get:

h∗1(s) =
s

2
− τ

2b
+

√(
s

2
+
τ2 − τ1
2b

)
+ c2,

h∗2(s) =
s

2
− τ

2b
−
√(

s

2
+
τ2 − τ1
2b

)
+ c2,
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where τ = τ1 + τ2 and c is an arbitrary constant. The corresponding portfolio
payoffs are displayed in next figure.
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Figure 6: Investor profiles

When there exists insurance constraints, we get:

Corollary 20 If there exist only two investors with linear risk tolerances, ho-
mogeneous beliefs and opposite cautiousness, then their optimal payoffs under
insurance constraints are given by:
(1) If h∗∗1 (s) > h1,g(s) and if h∗∗2 (s) > h2,g(s),

h∗∗1 (s) =
s

2
− τ

2b
+

√(
s

2
+
τ2 − τ1
2b

)
+ c2,

h∗∗2 (s) =
s

2
− τ

2b
−
√(

s

2
+
τ2 − τ1
2b

)
+ c2. (45)

(2) If h∗∗1 (s) < h1,g(s) or if h
∗∗
2 (s) < h2,g(s), we use the clearing relation to

deduce the payoffs.

Proof. See Appendix.

Next figure illustrates this case for guarantees corresponding to fixed per-
centages of the initial invested amounts.
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Figure 7: Investor "insured" profiles

Example 2: Suppose that the two investors have Lognormal beliefs and
negative exponential utility functions:

Ti,1(v) = τ1, and Ti,2(v) = τ2.

The optimal payoffs of investors are the solutions of:

h′∗∗i (s) =
τ i
τ
+ τ i

[
d ln fi(s)

ds
−

n∑

i=1

τ i
τ

d ln fi(s)

ds

]
if h∗i (s) > hi,g(s),

where τ = τ1I{h∗1(s)>h1,g(s)} + τ2I{h∗2(s)>h2,g(s)}.
Then, we get: if h∗i (s) > hi,g(s),

h∗∗i (s) = χi +
τ i
τ
s+ τ iϕi(s),

with ϕi(s) = ln fi(s)−
∑n
i=1

(
τ i
τ
ln fi(s)

)
and χi is a constant deduced from the

budget constraint. We note that, for this particular case, the investor’s stock
and derivatives positions do not depend on his initial wealth if there exists no
exogenous insurance constraint. When such constraint holds, the aggregate risk
tolerance depends on comparisons between h∗i (s) and hi,g(s). This latter one is
usually a function of the initial wealth (typically, a given percentage of it). The
bond position allows to finance the other ones. Note that the higher the risk
tolerance, the higher the shares invested on the stock and options. Note that
due to indicator functions I{h∗1(s)>h1,g(s)} and τ2I{h∗2(s)>h2,g(s)}, the aggregate
risk tolerance τ is smaller than for the non insurance case. However, on the
region ∩2i=1 {h∗i (s) > hi,g(s)}, they are equal. Note also, under constant risk
tolerance, we get:

q(s) = υ exp [−s/τ ]
n∏

i=1

[fi(s)]
τi
τ with υ constant. (46)

Thus, as mentioned in Carr and Madan (2001), the market view consists in
a weighted geometric average of the individual densities.
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4 Compensating Variations

In this section, we introduce the quantitative index of investor’s satisfaction
introduced by de Palma and Prigent (2008, 2009) to measure the utility loss
when the optimal portfolio is not available on the market. It is based on the
standard economic concept of compensating variation. If an investor with risk
aversion γ and initial investment V0 can buy his optimal portfolio, his expected
utility is E[Uγ(V ∗T );V0]. If this investor selects an optimal portfolio among only

those available, then he will get the expected utility E[Uγ(V
∗(λ)
T );V0]. He will

get the same expected utility provided that he invests an initial amount Ṽ0 ≥ V0.
Therefore, this investor requires a compensation Ṽ0 which satisfies:

E[Uγ(V
∗
T );V0] = E[Uγ(V

∗(λ)
T ); Ṽ0]. (47)

The amount Ṽ0 is in line with the certainty equivalent concept in expected
utility analysis. It can be viewed as an “implied initial investment” necessary
to maintain the level of expected utility. The same analysis can be applied to
the banker. We illustrate numerically the theoretical solutions for banker and
investor having both CRRA utilities.12 In what follows, we examine three main
cases: The first one corresponds to an investor who has no direct access to the
financial derivatives market. Due to the suboptimality of his standard buy-and-
hold portfolio, he may be ready to bear (theoretically) an additional cost to
can include options in his portfolio. The second case deals with the banker’s
compensating variation due to riskier financial position in the presence of the
investor’s guarantee and/or the bad fit of his resulting constrained portfolio to
his own risk aversion. Finally, we take the standard OBPI strategy as benchmark
to both evaluate the investor’s and banker’s compensating variations.

4.1 Compensating variation of buy-and-hold strategy w.r.t.
optimal portfolio with derivatives

In this subsection, we consider an investor who can only use a buy-an-hold
strategy if he has no access to the financial derivatives market. We determine
the compensating variation with respect to the true optimal payoff with deriv-
atives provided by the bank. The level of the compensating variation provides
a measure of the monetary loss, due to this friction. Conversely, they allow to
measure the interest of the investor to use financial intermediates to manage
their portfolios, which provides values of the cost they may accept to benefit
from such financial service.13

12The other cases (logarithm and CARA) can be illustrated as well. However, CRRA
utilities generally fit better the true utility. Additionnally, as shown for the CRRA case, the
numerical values of the compensating variations are sufficiently significant to illustrate them.
13We assume that the investor cannot get a portfolio payoff which involves derivatives

covered by a dynamic strategy in continuous-time. Thus, if he wants to include options in
his portfolio, he must either buy them on the financial market (with a given additional cost),
either buy part of a structured fund managed by a financial institution (assumed here to be
a bank for simplicity).
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4.1.1 The optimal buy-and-hold strategy

The investor i maximizes his expected utility:

MaxwSE [U [VT ]] ,

where VT denotes the portfolio value at maturity T and wS corresponds to the
proportion of wealth invested on the risky asset S.
The buy-an-hold condition consists in fixing shares during the management

period. Therefore, we have:

VT = V0 ×
(
erT + wS(e

XT − erT )
)

The first-order condition implies:

E
[
U ′(VT )(e

XT − erT )
]
= 0,

which is equivalent to:
∫
U ′
[
V0 ×

(
erT +w∗S(e

x − erT )
)]
(ex − erT )fX(x)dx = 0, (48)

where fX denotes the pdf of the random variable X = (µi − 1/2σ2i )T + σiWT .
If the investor has not access to derivatives, then his utility level is smaller

than when the bank provides his true optimal portfolio with derivatives. In
what follows, we illustrate the compensating variation corresponding to this
particular case.

4.1.2 The compensating variation for the buy-and-hold strategy

Our numerical base case corresponds to the following financial parameters:

r = 3%;µ = 7%;σ = 20%;B0 = 1;S0 = 100;T = 5;Vi,0 = 1000; pi = 1 (49)

CRRA case with guarantee.

In this framework, Equation (47) is equivalent to:

E[Uγ(piVi,0+Max [αiVi,0S
mi

T − piVi,0, 0])] = E[Uγ(Ṽi,0×
(
erT +w∗i,S(e

x − erT )
)
)],

(50)
where αi is determined from the budget equation:

EQ (piVi,0 +Max [αiVi,0S
mi

T − piVi,0, 0]) = Vi,0erT

Proposition 21 Since here Uγ(v) =
v1−γ

1−γ , we deduce that the CV equal to the

ratio Ṽi,0/Vi,0 is given by:

Ṽi,0
Vi,0

=



EP

[
(pi +Max [αiS

mi

T − pi, 0])(1−γi)
]

EP[(erT +w∗i,S [e
x − erT ])(1−γi)]




(
1

1−γi

)
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The numerical values of the CV
Ṽi,0
Vi,0

are displayed in next Table. We consider

both three values for the drift µ and for the volatility σ. Five levels of relative
risk aversion (RRA) are introduced: γ = 0.5 and 2 ("aggressive investors");
γ = 5 (moderate investor); γ = 7 and γ = 10 (more conservative investors).
The parameter wS denotes the optimal weights invested on the risky asset for
the buy-and-hold strategy without insurance constraint. The parameter wcS
denotes the optimal weights invested on the risky asset for the buy-and-hold
strategy with insurance constraint (the upper bound to guarantee the capital at
maturity corresponds to 1− pie−rT with the insured proportion pi equal to 1).
The compensating variation (CV) is expressed in percentage of the true initial
wealth invested Vi,0 on the financial market.

Table 1: Compensating Variations for the CRRA case, w.r.t. the standard
buy-and-hold portfolio
RRA γ µ = 5% a n d σ= 20% µ = 7% a n d σ= 20% µ = 10% a n dσ= 20%

wS w
c
S CV wS w

c
S C V wS w

c
S C V

0 .5 1 0 0% 1 4% 6 .4 5% 1 0 0% 1 4% 6 .4 2% 1 0 0% 1 4% 1 5 .8%

2 5 5% 1 4% 2 .3 7% 8 0% 1 4% 2 .3 7% 1 0 0% 1 4% 6 .1 8%

5 0% 0% 2% 3 0% 1 4% 1 .0 1% 4 5% 1 4% 2 .2 4%

7 0% 0% 1 .5 6% 1 0% 1 0% 1 .1 6% 3 3% 1 4% 1 .3 9%

1 0 0% 0% 0 .5 9% 0% 0% 1 .3 4% 0% 0% 2 .8 8%

RRA γ µ = 7% a n d σ= 15% µ = 7% a n d σ= 20% µ = 7% a n d σ= 25%
wS w

c
S CV wS w

c
S C V wS w

c
S C V

0 .5 1 0 0% 1 4% 1 5 .7 1% 1 0 0% 1 4% 6 .4 1% 1 0 0% 1 4% 5 .0 7%

2 1 0 0% 1 4% 6 .1 8% 8 0% 1 4% 2 .3 7% 5 0% 1 4% 2 .4 3%

5 4 5% 1 4% 2 .2 4% 3 0% 1 4% 1 .0 1% 0% 0% 2%

7 3 4% 1 4% 1 .3 8% 1 0% 1 0% 1 .1 6% 0% 0% 1 .7 3%

1 0 0% 0% 2 .9 2% 0% 0% 1 .3 4% 0% 0% 1 .5 5%

From Table (1), we note that the compensating variation can be relatively
high (up to 15.8%). It is not a monotonous function with respect to financial
parameters µ and σ. However, for weak relative risk aversion (γ = 0.5 or 2), the
values of compensating variation are higher than 2.37%. This due to the fact
that these investors are rather agressive once the guarantee is fixed. Therefore,
they suffer from not having a strictly convex portfolio profile when using a buy-
and-hold strategy. For conservative investors (γ = 7 or 10), the utility loss is
less severe since they do not try to make the best benefit from the performance
of the risky asset. For a moderate investor (γ = 5), the compensating variation
is about 2%.
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4.2 Compensating variations with constraints on the banker

In what follows, we assume that the banker provides exactly the optimal payoff
with insurance constraint of the customer. Therefore, the banker may bear a
utility loss for not having his own optimal portfolio profile. Indeed, his portfolio
profile hb is determined from Relation (27) based on derivative market clearing
conditions. Therefore, we have:

hb,T = qSST + qBBT − hi,T , (51)

where qS and qB are the shares respectively invested by the banker on the risky
asset S and the riskless asset B, on one hand to partially hedge the payoff hi
sold to the investor and, on the other hand, to partially optimize the expected
utility of his financial position hb.

The parameters qS and qB are linked also to the budget constraint of the
banker: Vb,0 = qSS0 + qBB0 − Vi,0 and his regulatory risk constraint:

P [Vb,T − Vb,0 + V aR (ε) ≤ 0] ≤ ε, (52)

where V aR (ε) denotes the Value-at-Risk of the financial position at the given
probability level ε.

Additional criteria can be introduced to determine the shares qS and qB:

Criterion 1: The banker tries to minimize the ratio of the reserve amount
upon the initial investment necessary to prevent losses at the given probability
level ε.
Criterion 2: (“delta-neutrality”) The portfolio manager (the banker) can try

to hedge the investor’s portfolio profile by setting:

qS =
∂hi,0
∂S0

. (53)

It means that the banker searches for a riskless portfolio but can only hedge
the investor’s risky position by a static position. Therefore, this leads only to a
partial hedging with a residual risk, according to risky asset fluctuations.

4.2.1 Compensating variations with VaR constraints on the banker

The VaR condition can be detailed as follows:

P [qSST + qBBT − hi,T − Vb,0 + V aR (ε) ≤ 0] ≤ ε (54)

is equivalent to: (recall that qSS0+ qBB0−Vi,0 = Vb,0, thus qB = (Vi,0+Vb,0−
qSS0)/B0).

P
[
qS
(
ST − S0erT

)
− hi,T + erTVi,0 +

(
erT + δ − 1

)
Vb,0 ≤ 0

]
≤ ε,

with V aR (ε) /Vb,0 = δ.
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Set:
c = −qSS0erT +

(
erT − pi

)
Vi,0 +

(
erT + δ − 1

)
Vb,0.

Then, the VaR condition is equivalent to:

P [qSST + Vi,0Max(αiS
mi

T − pi, 0) + c ≤ 0] ≤ ε. (55)

The previous probability (55) is given by:

E
[
IqSs+Vi,0Max(αismi−pi,0)+c≤0

]
.

In this framework, the characterization of the banker’s compensating varia-
tion CVb is determined from the equality:

E[U
b
(h∗

b,T
);Vb,0)] = E[Ub

(hb,T ); Ṽb,0], (56)

where h∗
b,T
denotes the true optimal payoff for the initial invested amount Vb,0.

Assume that both the banker and the investor have CRRA utilities with
respective RRA γb and γi. We consider both three values for the drift µ (µ =
4%;µ = 7%;µ = 15%) and for the volatility σ (σ = 10%;σ = 20%;σ = 30%).
Five levels of the investor’s relative risk aversion (RRA) are introduced: γi = 0.5
and 2 ("aggressive investors"); γi = 5 (moderate investor); γi = 7 and 10 (more
conservative investors). For the banker, we assume the following relative risk
aversions: γb = 0.1, 0.5, 2, 5 and 10. We choose the standard probability level:
ε = 1%. For the ratio , we set δ = 5%.14

In Appendix 4, figures about both investor’s and banker’s payoffs are dis-
played to illustrate the impact of expected risky asset return µ and volatility
σ on the portfolio profiles. We note for example that for high values of µ or
weak values of σ (thus high values of Sharpe ratio, which implies rather good
performance of the financial market), the constrained banker’s payoff can be, on
one hand negative for risky asset values far from the spot value S0, and, on the
other hand, decreasing when the risky asset price rises significantly (see Figures
A.4.3 and A.4.4). On the contrary, for small risky asset prices or high volatility
values (thus small values of Sharpe ratio, which implies weak performance of the
financial market), the constrained banker’s payoff is most of the time increasing
for risky asset values far from the spot value S0 (see Figures A.4.2 and A.4.5).

Due to Relation (51), the expected utility of the banker when accepting to
sell the investor’s profile is given by:

1

1− γb
E
[
(qSST + qBBT − (pi +Max [αiS

mi

T − pi, 0])Vi,0)1−γb
]
.

His expected utility for his best strategy is given by:

1

1− γb
E
[
(αb × Smb

T )1−γb
]
.

To compensate (theoretically) the non optimality of first portfolio, the banker
must invest a higher initial amount Ṽb,0. Therefore, we deduce:

14 If MinqS ,qBV aR(ε)/Vb,0 ≥ δ, we choose the pair (qS , qB) that minimizes V aR(ε)/Vb,0.

30



Proposition 22 The CV equal to the ratio Ṽb,0/Vb,0 is given by:

Ṽb,0
Vb,0

=




E
[
(αb × Smb

T )1−γb
]

E

[(
qSST+qBBT−(pi+Max[αiS

mi
T −pi,0])Vi,0

Ṽb,0

)1−γb]




(
1

1−γb

)

.

The numerical values of the CV
Ṽb,0
Vb,0

are displayed in Table (2), which pro-

vides the CV values for the VaR criterion. We set V0,b = 1000.
15 For the banker,

we assume the following relative risk aversions: γb = 0.1, 0.5, 2, 5 and 10. We
can see that for high Sharpe type ratio due to high return (µ−r

σ2
= 3 for the

case µ = 15% and σ = 20%), the (theoretical) CV is very high (except for the
less risky position corresponding to γi = 10 and γb = 10). This is mainly due
to the high risk of the constrained banker’s payoff, due to the convexity of the
investors’ payoff and/or his additional guarantee demand. Indeed, in this case,
the static VaR hedge is inefficient (recall that T = 5 years) and the banker’s risk
is too high, which implies very high CV to theoretically compensate this risk
level. For high Sharpe type ratio due to small volatility (µ−r

σ2
= 4 for the case

µ = 7% and σ = 10%), the CV lies between 0.2% and 10%. For γb = 10, the CV
value is about 2%. These CV values are much smaller than previous ones, since
the volatility risk is small. For more standard Sharpe type ratio (µ−r

σ2
= 1 for

the case µ = 7% and σ = 20%), the (theoretical) CV can be very high for weak
RRA γb of the banker (γb = 0.1; 0.5) and/or for weak RRA γi of the investor.
However, if we assume that the banker does not search for high returns from
his investment Vb,0 but rather for total returns that are almost riskless, then his
RRA γb must be relatively high, for instance γb = 10. In that case, his CV lies
between 4.7% and 7.5%, except for the riskier case (γi = 0.5). For relatively
small Sharpe type ratio (µ−r

σ2
= 4

9 , for the case µ = 7% and σ = 30%), the CV is
still high (about 23%) since the volatility is also very significant (σ = 30%). Fi-
nally, for small Sharpe type ratio (µ−r

σ2
= 1

4 , for the case µ = 4% and σ = 20%),
the CV value lies mainly between 4% and 9%. This is due in particular to the
bad performance of the financial market for the investor.

15 It corresponds to the amount invested by the investor and allow to partially hedge the
risk due to the investor’s profile. Note that other banker’s amount (for instance twice) do not
change substantially the main conclusion of this study.
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Table 2: CV CRRA (banker) VaR constraint
RRA µ = 4% a n d σ= 20% µ = 7% a n d σ= 20% µ = 15% a n d σ= 20%
γi/γb 2 5 10 2 5 10 2 5 10
0 .5 4.42% 4.85% 6% 47% 3 2% 2 0% ×65 ×20 ×5 4

2 4.88% 6.98% 9.83% 6.5% 4 .6% 4.7% ×28 ×10 ×20
5 4.47% 6.32% 8.97% 5.2% 5.3% 5.4% ×1.36 13% 6.5%
10 4.33% 6.09% 8.54% 4.8% 4.9% 7.5% ×1.26 7.5% 5%

RRA µ = 7% a n d σ = 10% µ = 7% a n d σ = 20% µ = 7% a n d σ = 30%
γi/γb 2 5 10 0.1 0.5 2 5 10
0 .5 7.72% 7.75% 8 .2% 83% 85% 26% 28% 34%
2 10.6% 9 .5% 9 .1% 69% 19.7% 23% 24.5% 27%
5 26% 13% 9.8% 64% 16% 21.8% 23.7% 26.7%
10 8.8% 0.22% 1.84% 64% 16% 21.3% 23% 25.8%

4.2.2 Compensating variations with risk-neutral hedge constraints
on the banker

Assume the delta-neutrality characterized by the condition: qS =
∂Vi,0
∂S0

. Here,

since we have Vi,0 =
(
pie−rTVi,0 +Ci

)
where denotes the initial value of the

power call Max [αiVi,0S
mi

T − piVi,0, 0].

Lemma 23 Assume that S is the geometric Brownian motion given in (12).

Then the share qS =
∂Vi,0
∂S0

is given by:

qS = αiVi,0
(
miS

mi−1
0 exp

[
1/2 σ2mi(mi − 1)T

])
N
[
d1
(
Ŝ0, K̂, σ̂, r̂

)]
, (57)

where:

Ŝ0 = Smi

0 exp
[
1/2 σ2mi(mi − 1)T

]
, K̂ = pi/αi,

σ̂ = miσ, and r̂ = r.

Proof. The power call Max [αiVi,0S
mi

T − piVi,0, 0] is equal to

αiVi,0Max [Smi

T − pi/αi, 0] .

Recall that we suppose:

St = S0exp
[
(µ− 1/2σ2)t+ σWt

]
.

Thus, we have:

Smi

T = Smi

0 exp
[
mi(µ− 1/2σ2)T +miσWT

]
,

which is also equal to

Smi

0 exp
[
1/2 σ2mi(mi − 1)T

]
.exp

[
(miµ− 1/2m2

iσ
2)T +miσWT

]
.
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Therefore, using the Black and Scholes formula for a standard call option with
underlying Ŝ0, strike K̂, volatility σ̂, interest rate r̂, the initial value of the
power call is given by:

N
[
d1
(
Ŝ0, K̂, σ̂, r̂

)]
−N

[
d2
(
Ŝ0, K̂, σ̂, r̂

)]
,

with:

d1
(
Ŝ0, K̂, σ̂, r̂

)
=

ln
(
Ŝ0
K̂

)
+
(
r̂ + 1

2 σ̂
2
)
T

σ̂
√
T

,

d2
(
Ŝ0, K̂, σ̂, r̂

)
= d1

(
Ŝ0, K̂, σ̂, r̂

)
− σ̂

√
T ,

and:

Ŝ0 = Smi

0 exp
[
1/2 σ2mi(mi − 1)T

]
,

K̂ = pi/αi,

σ̂ = miσ,

r̂ = r.

Consequently, we have:

∂Vi,0
∂S0

= αiVi,0

(
∂Ŝ0
∂S0

.
∂Vi,0

∂Ŝ0

)
.

Thus we have:

∂Vi,0
∂S0

= αiVi,0
(
miS

mi−1
0 exp

[
1/2 σ2mi(mi − 1)T

])
N
[
d1
(
Ŝ0, K̂, σ̂, r̂

)]
.

We illustrate now numerically this particular case for our numerical base
case (49). For the numerical base case, we get the following investor and banker
profiles: the banker and the investor have CRRA utilities with respective RRA
γb and γi. In Appendix (A.5), we illustrate both the investor’s and banker’s
portfolio profiles. We consider both three values for the drift µ (µ = 4%;µ =
7%;µ = 15%) and for the volatility σ (σ = 10%;σ = 20%;σ = 30%). Five
levels of the investor’s relative risk aversion (RRA) are introduced: γi = 0.5
and 2 ("aggressive investors"); γi = 5 (moderate investor); γi = 7 and 10 (more
conservative investors). For the banker, we assume the following relative risk
aversions: γb = 0.1, 0.5, 2, 5 and 10.
In Appendix 5, figures about both investor’s and banker’s payoffs are pro-

vided to show the influence of expected risky asset return µ and volatility σ
on the portfolio profiles. We note for example that the banker’s payoff is most
of the time positive except for weak RRA γi of the investor and/or high risky
expected return µ. However, for high risky expected return µ, it is still positive
for small RRA γi (for example, γi = 10 in Figure A.5.3). For small volatility
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(σ = 10%) and small RRA γi (for example, γi = 0.5 in Figure A.5.4), the
banker’s payoff is flat. Note also that most of the time, it decreasing from a
given value of the spot price S0.

We now examine the numerical values of the CV
Ṽb,0
Vb,0

. The numerical values

of the CV Ṽb,0
Vb,0

are displayed in Table (3), which provides the CV values for

the risk-neutral hedge criterion. We still set V0,b = 1000. We can see that for
high Sharpe type ratio due to high return (µ−r

σ2
= 3 for the case µ = 15% and

σ = 20%), the (theoretical) CV is very high (except for the less risky position
corresponding to γi = 10 and γb = 10. In that case, the CV is equal to 5.4%).
As for the VaR constraint, this is due to the high risk of the constrained banker’s
payoff, due to the convexity of the investors’ payoff and/or his additional guar-
antee constraint.16For high Sharpe type ratio due to small volatility (µ−r

σ2
= 4

for the case µ = 7% and σ = 10%), the CV lies between 6% and 100%. For
the most convenient banker’s RRA γb = 10, the CV value is about 12%. These
CV values are smaller than previous ones when γb = 10, since the volatility risk
is small. For more standard Sharpe type ratio (µ−r

σ2
= 1 for the case µ = 7%

and σ = 20%), the (theoretical) CV is can be very high for weak RRA γb of
the banker (γb = 0.1; 0.5) and/or for weak RRA γi of the investor. When the
banker’s RRA γb is relatively high (more convenient case), for instance γb = 10,
his CV is about 4% or 5%, except for the riskier case (γi = 0.5). For relatively
small Sharpe type ratio (µ−r

σ2
= 4

9 , for the case µ = 7% and σ = 30%), the CV is
still high (about 20%) since the volatility is also very significant (σ = 30%). Fi-
nally, for small Sharpe type ratio (µ−r

σ2
= 1

4 , for the case µ = 4% and σ = 20%),
the CV value lies mainly between 3% and 4.5%. As for the Var constraint case,
this is due for instance to the bad performance of the financial market for the
investor.

Note also that if we compute other CV numerical values, we get in particular
the following values for the small volatility case (µ = 7% and σ = 10%):

CV [γi = 0.5, γb = 0.1] ≃ 0% and CV [γi = 0.5, γb = 0.5] = 7.28%
CV [γi = 2, γb = 0.1] ≃ 0% and CV [γi = 2, γb = 0.5] = 7.4%
CV [γi = 5, γb = 0.1] ≃ 0% and CV [γi = 5, γb = 0.5] = 8.4%
CV [γi = 10, γb = 0.1] ≃ 0% and CV [γi = 10, γb = 0.5] = 9%

The very weak CV values for γb = 0.1 are due to the better fit of the risk-
neutral hedge banker’s portfolio to his true optimal portfolio for small volatility
when he has little relative risk-aversion.

16As in previous VaR case, the static risk-neutral hedge is rather inefficient in that case
(recall that T = 5 years). Therefore, the banker’s risk is too high, which implies very high
CV to theoretically compensate this risk level.
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Table 3: CV CRRA (banker) Risk-neutral hedge
RRA µ = 4% a n d σ= 20% µ = 7% a n d σ= 20% µ = 15% a n d σ= 20%
γi/γb 2 5 10 2 5 10 2 5 10
0 .5 4.37% 4.35% 4.6% 47% 3 6% 4 2% 7 7% 9 3% 9 6%

2 3.7% 3.6% 3.54% 8.44% 5.9% 5.2% 7 5% 9 3% 9 6%

5 3.5% 3.33% 3.32% 8% 5.5% 4.7% 46% 20% 13%

1 0 3.4% 3.23% 3.21% 7.78% 5.1% 4.3% 45% 11.6% 5.4%

RRA µ = 7% a n d σ = 10% µ = 7% a n d σ = 20% µ = 7% a n d σ = 30%
γi/γb 2 5 10 0.1 0.5 2 5 10
0 .5 68% 86% 91% 91% 8 7% 2.55% 2.51% 2.4%
2 69% 87% 92.8% 57% 2 0 .5% 2 0% 2 0% 1 9 .8%

5 78% 99% 5.5% 6 9 .2% 21.6% 20.1% 20% 1 9 .9%

1 0 84% 6% 12% 72.4% 21.15% 19.9% 19.9% 19.8%

4.3 Compensating variations of both the investor and the
banker with respect to the standard OBPI case

In this subsection, we consider an investor who cannot exactly get his optimal
portfolio. As emphasized in de Palma and Prigent (2008, 2009), typically finan-
cial institutions provide a limited number of standardized portfolios which do
not exactly match investor preferences. Mistreating the “demand side” can also
yield to significant utility losses for the investor. In what follows, we illustrate
this feature for investors who can only buy the standard OBPI strategy. This
financial product with guarantee is the first one (see Leland and Rubinstein,
1976), and serves as fundamental example to construct other guarantee funds.

We determine the compensating variation with respect to the true optimal
payoff. The levels of compensating variation provide a measure of the monetary
loss, due to of this type of friction. We also examine the CV for the banker in
this framework.

The OBPI method consists basically in purchasing an amount qi.Ki invested
on the money market account, and qi shares of European call options written
on asset S with maturity T and exercise price Ki. The value V

OBPI
i,t of this

portfolio at any time t in the period [0, T ] is:

V OBPIi,t = qi
(
Kie

−r(T−t) +C(t,Ki)
)
, (58)

where C(t, x) denotes the no-arbitrage value of a European call option with
strike x, calculated under a given risk-neutral probability Q (if coefficient func-
tions µ, a and b are constant, C(t, x) is the usual Black-Scholes value of the
European call). Note that, for all dates t before T , the portfolio value V OBPIi,t

is always above the deterministic level qiKie−r(T−t). The investor is still will-
ing to recover a percentage p of his initial investment Vi,0. Then, the portfolio
manager has to choose the two appropriate parameters, qi and Ki.
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- First, since the insured amount is equal to qi.Ki, it is required that Ki
satisfies the relation:17

piVi,0 = piqi(Ki.e
−rT +C(0,Ki)) = qiKi, (59)

which implies that:
C(0,Ki)

Ki
=
1− pie−rT

pi
. (60)

Therefore, the strike Ki is an increasing function Ki (pi) of percentage pi.
- Second, the number of shares qi is given by:

qi =
Vi,0

Kie−rT +C(0,Ki)
. (61)

Thus, for any investment value Vi,0, number of shares qi is a decreasing function
of percentage pi.

For our numerical base case (13), we get: Ki = 119.3 and qi = 8.38.

Next figure illustrates both the investor’s and banker’s portfolio profiles when
the OBPI portfolio is provided to the investor. For the banker, we consider the
risk-neutral hedge portfolio with initial investment Vb,0 = 1000.
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Figure 8: OBPI Profiles

As it can be seen, the investor’s guarantee (Vi,0 ≥ Vi,T ) implies that the
banker’s constrained portfolio may suffer from significant losses for bearish mar-
ket (for example if ST ≤ 0.8 S0,then the loss is higher than 10%) or when the
risky asset price ST grows highly (ST ≥ 1.45 S0).

17This relation can also be adjusted to take account of the smile effect.
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We compute now the CV for both the investor and the banker, with same
RRA values γi and γb as previously. Recall that the OBPI strategy is the
optimal investor’s portfolio if and only if γi = 1/(

µ−r
σ2
) (in that case, the power

mi is equal to 1). Apart this case, the investor does not receive his true optimal
portfolio and bears utility losses. The banker also has not his true optimal
portfolio. Additionally, he may suffer from portfolio value losses. Consequently,
we must examine both their compensating variations. They are displayed in
next table. We note that in this framework, the CV is generally much higher
for the banker than the investor. However, if we consider the standard case
(risky asset return µ = 7%, which is the usual value on long term horizon and
volatility σ = 20%), then the investor’s and banker’s compensating variations
are almost equal. Roughly speaking, it means that these two CV compensate
each other, which implies that only small CV values can be required by the
banker (if any).

Table 4: CV for the CRRA case (OBPI)
RRA σ = 20% µ = 7%
γi/σ µ = 4% µ = 7% µ = 15% σ = 10% σ = 20% σ = 30%
0 .5 5.36% 15.2% ×2.3 ×2.1 15.2% 19.4%
2 7.52% 6.5% 21.6% 20% 6.5% 19.7%
5 11.7% 9.2% 9% 10.3% 9.2% 24.5%
1 0 14.1% 12.7% 11% 10.1% 12.7% 28.6%

RRA σ = 20% µ = 7%
γb µ = 4% µ = 7% µ = 15% σ = 10% σ = 20% σ = 30%
0 .5 ×3.2 19.5% ×6.2 ×4.2 19.5% ×3.4
2 ×2.67 7.4% ×5.9 ×3.9 7.4% ×2.4
5 ×2.82 7.1% ×6.3 ×5.6 7.1% ×2.7
1 0 ×4.1 11.4% ×6.5 5.2% 11.4% ×3.1
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5 Conclusion

Using the expected utility theory framework, we determine the optimal pay-
offs and their prices at equilibrium under insurance constraints on the horizon
wealth for a large class of models. The results prove that derivative assets have
to be introduced in the portfolio to maximize the expected utility of investors.
The optimal solution clearly depends on the risk aversion of the investor and
on the specification of the guarantee at maturity. Under the standard assump-
tions that the insurance constraints and the payoff are modelled by continuous
functions of the risky asset, the solution is equal to the maximum between this
function and the solution of the unconstrained problem but with a different ini-
tial wealth. These optimal portfolios can be determined for quite general utility
functions, stock prices and insurance constraints. In the no guarantee case, the
concavity/convexity of the portfolio profile is determined from the degree of risk
aversion and from the financial market performance, for example a Sharpe type
ratio. This kind of result still holds according to the insurance constraint at
maturity. We show that, even with exogenous insurance constraints, the equi-
librium risk-neutral density is equal to the product of a factor corresponding to
the total risk tolerance, and a factor reflecting the personal beliefs, which is a
generalization of Carr and Madan (2001). Note that the first factor is a positive
decreasing function of the risky asset value which may imply a change in the
mean and involve negative skewness. Then, we introduce the notion of com-
pensating variation to provide a quantitative measure of the utility losses from
not getting the true optimal portfolios. We provide the numerical illustration
of these theoretical compensations for banker and investor having both CRRA
utilities, through three main cases (investor having no direct access to the finan-
cial derivatives market; banker’s compensating variation due to riskier financial
position induced by the investor’s guarantee; and finally the standard OBPI
strategy as benchmark to both measure the investor’s and banker’s compensat-
ing variations). For standard financial parameter values and rational relative
risk aversions (it means in particular that the banker must have a significant risk
aversion), the level of these compensating variations lies between 3% and 10%
for the banker’s compensating variation, when he bears the insurance constraint
of the investor. However, if we compute both the banker’s and the investor’s
compensating variations with respect to the benchmark OBPI strategy, the two
values are very close. In this latter case, this balance between the compensating
variations yields to small compensating variations at the equilibrium.
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Appendix

Appendix 1. (Optimal portfolio profile with guarantee constraint)
To solve this optimization problem, introduce the sets

Ki,1 = {hi ∈ L2(R+,Pi(ds))|Vi,0 = e−rTEPi [hi(ST )Mi,T ]}

and
Ki,2 = {hi ∈ L2(R+,Pi(ds))|hi ≥ hi,0}.

The set Ki = Ki,1 ∩ Ki,2 is a convex set of L2(R+,Pi(ds)). Consider the
following indicator function of Ki, denoted by δKi

and defined by:

δKi
(hi) =

{
0 if hi ∈ Ki
+∞ if hi /∈ Ki

Since Ki is closed and convex, δKi
is lower semi-continuous and convex.

Recall the notion of subdifferentiability: (see for example Ekeland and Turn-
bull (1983) for definition and properties of subdifferentials)
Let V denote a Banach space and < ., . > the duality symbol.
Definitions:
1) For any function H defined on V with values in R∪ {+∞}, a continuous

affine functional l : V → R everywhere less than H (i.e. ∀v ∈ V, l(v) ≤> H(v))
is exact at v∗ if l(v∗) = H(v∗).
2) A function H : V → R ∪ {+∞} is subdifferentiable at v∗ if there exists a

continuous affine functional l(.) =< ., vl > −a, everywhere less than H, which
is exact at v∗. The slope vl of such an l is a subgradient of H at v∗. The set of
all subgradients of H at v∗ is the subdifferential of H at v∗ and is denoted by
∂H(v∗).

Recall the following characterization:

vc ∈ ∂F (v∗) iff F (v∗) < +∞ and ∀v ∈ V,< v − v∗, vc > +F (v∗) ≤ F (v). (62)

Denote by ∂δK the subdifferential of δK . The optimization problem is equiv-
alent to:

Maxh (E[U(h(XT )]− δK(h)) (63)

The optimality conditions leads to the following result:
There exists a scalar λc and a function hc defined on L

2(R+,P(ds)) such
that:

h∗ = J(λcg + hc), (64)

where λc is solution of the following problem: Find y such that

V0 =

∫ ∞

0

J [yg(s) + hc(s)]g(s)f(s)ds.

and hc ∈ ∂δK2
(h∗).
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Proof. Denote by L the functional defined by

L(h) = (−E[U(h(ST ))] + δK(h)) .

The optimization problem

Maxh (E[U(h(ST )]− δK(h)) (65)

is equivalent to the following:

−Minh (L(h)) , (66)

where L is subdifferentiable and h∗ is solution of the optimal problem iff 0 ∈
∂L(h∗).
ΦU is continuous and, due to the kind of constraints, δK is continuous. Thus :

∂L = ∂(−ΦU + δK) = ∂(−ΦU) + ∂(δK).

Moreover, since ΦU is differentiable then ∂(ΦU ) = {Φ′U}. Additionally, we have:

∂(δK) = ∂(δK1
) + ∂(δK2

).

From the characterization (62), h1 ∈ ∂δK1
(h∗) if and only if

∀h,
∫ ∞

0

(h− h∗)(s)h1(s)P(ds) + δK1
(h∗) ≤ δK1

(h).

In particular, ∀h ∈ K1,
∫∞
0
(h − h∗)(s)h1(s)P(ds) ≤ 0, from which we deduce

that h1 is orthogonal to any orthogonal function to the subspace generated by
g. Thus, there exists a scalar λc such that h1 = λcg.
To conclude, 0 ∈ ∂L(h∗) iff there exists hc ∈ ∂δK2

(h∗) such that

0 = −U ′(h∗) + λcg + hc.

To explain more precisely the condition hc ∈ ∂δK2
(h∗), assume that the

insurance constraint h0 and hc are continuous.
18 Consequently, the optimal

payoff h∗ is continuous. Then, we deduce the following corollary:
Under the above assumption, the function hc satisfies the following property:

1) If on an product I of intervals of values of ST , h
∗(ST ) > h0(ST ) then hc is

equal to 0 on I.
2) If on an product I of intervals of values of ST , h

∗(ST ) = h0(ST ) then hc is
negative on I.

Proof. Recall that from the characterization (62), we deduce:

∀h ∈ L2(R+,P(ds)),
∫ ∞

0

(h− h∗)(s)(hc)(s)P(ds) + δK2
(h∗) ≤ δK2

(h).

18Such properties are always verified in practice.
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In particular :

∀h ∈ L2(R+,P(ds)) such that h ≥ h0,
∫ ∞

0

(h− h∗)(s)hc(s)P(ds) ≤ 0.

From the previous condition, we deduce:
If ∀s ∈ I, h∗(s) > h0(s) then, on each compact subinterval Ico of I, we can
consider mco equal to the minimum of h∗ − h0 on Ico.mco is non negative.
Now, consider the function h equal to h∗ − (mco1Ico). By construction, h > h0
everywhere. Therefore, the relation

∫
(h− h∗)(s)hc(s)P(ds) ≤ 0 is true.

This implies :

mco

∫

Ico

hc(s)P(ds) ≥ 0.

On the other hand, by letting h equal to h∗+a where a is a non negative constant,
a
∫
Ico
hc(s)P(ds) ≤ 0. Consequently, since for all Ico,

∫
Ico
hc(s)P(ds) = 0, hc is

equal to 0 on the product of intervals I.
To prove (2), consider for all Ico, a function h equal to h

∗+a1Ico . Then, the
relation

∫
(h− h∗)(s)hc(s)P(ds) ≤ 0 becomes a

∫
Ico
hc(s)P(ds) ≤ 0, from which

the negativity of hc on I is deduced.
Under the previous assumptions on the utility U , there is one and only one

continuous optimal payoff, associated to the unique solution λc of the budget
equation.

Proof. From the assumptions on the marginal utility U ′, we deduce that
its inverse J is a continuous and decreasing function with:

limo+J = +∞ and lim+∞J = 0

Thus, for all s, the function λc −→ h∗(λc, s) =Max(h0(s), h̃(λc, s)) is continu-
ous and decreasing. Therefore, the function λc −→ EQ[h

∗(λc, ST )] is continuous
and decreasing from +∞ to EQ[h0(λc, ST )] which is lower than the initial in-
vestment V0. From the intermediate values theorem and by monotonicity, the
result is deduced.

Appendix 2. (European Guarantee: alternative proof)

The guarantee constraint consists in letting the portfolio value Vi,T at ma-
turity above a floor Fi,T . This floor may be deterministic, corresponding for
example to a predetermined percentage pi of the initial investment Vi,0 or may
be stochastic if, for instance, the investor wants to benefit from potential market
rises. For example, this floor may be equal to

Fi,T = aiST + bi,

where ai is a given percentage of the benchmark S (a stock index for instance)
and bi is a fixed guaranteed amount which corresponds usually to a fixed per-
centage of the initial investment. In all cases, it is assumed that there exists a
self-financing portfolio that duplicates the floor Fi,T .
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Then, for a given initial investment V ∗0 , the investor wants to find the port-
folio θ solution of the following optimization problem:

Maxθ EPi [Ui(Vi,T )] under Vi,T ≥ Fi,T . (67)

Due to market completeness, this problem is equivalent to (see Cox and Huang,
1989):

MaxVi,T EPi [Ui(Vi,T )] (68)

under Vi,T ≥ Fi,T and V
∗
i,0 = e

−rTEPi [Vi,TMT ] ≥ e−rTEPi [Fi,TMi,T ].

Then, we deduce:
The optimal solution V ∗∗i,T of problem (67) is given by the maximum of the

floor Fi,T and the solution V ∗i,T of the non constrained problem for an initial

investment V ∗i,0 such that V
∗
i,0 = e−rTEPi [Max(V

∗
i,T , Fi,T )Mi,T ]. Equivalently,

this solution can be viewed as a combination of the portfolio value V ∗i,T and a
Put written on it with “strike” equal to the floor or a combination of the floor
and a Call written on the portfolio value V ∗i,T .

V ∗∗i,T = V
∗
i,T + (Fi,T − V ∗i,T )+ = Fi,T + (V

∗
i,T − Fi,T )+.

Proof. The proof is similar to KJL (2005). Consider the solution V ∗i,T of
the free problem (without guarantee constraint). Using Cox and Huang (1989),
this solution is given by

V ∗i,T = Ji(αiMi,T ),

where the Lagrangian parameter αi is such that V
∗
i,0 = e

−rTEPi [V
∗
i,TMi,T ].

Furthermore, for any portfolio Vi,T with initial investment Vi,0 satisfying
Vi,T ≥ Fi,T , since the marginal utility U ′i is concave, we have :

Ui(Vi,T )− Ui(V ∗i,T ) ≤ U ′i(V
∗
i,T )(Vi,T − V ∗i,T ),

and, since Ui′ is decreasing, we deduce:

U ′i(V
∗
i,T )(Vi,T − V ∗i,T ) =Min(αiMi,T , U ′i(Fi,T ))(Vi,T − V ∗i,T ).

Additionally,

Min(αiMi,T , U
′
i(Fi,T ))(Vi,T−V ∗i,T ) = αiMi,T (Vi,T−V ∗i,T )−[αiMi,T−U ′i(Fi,T )]+(Vi,T−Fi,T ).

Finally, since EPi [Vi,TMi,T ] = V ∗i,0 = EPi [V
∗
i,TMi,T ], we get:

EPi [Min(αiMi,T , U
′
i(Fi,T ))(Vi,T−V ∗i,T )] = −EPi [[αiMi,T−U ′i(Fi,T )]+(Vi,T−Fi,T )] ≤ 0.

Therefore:
EPi [Ui(Vi,T )] ≤ EPi [Ui(V ∗i,T )].
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Appendix 3. (Optimal portfolio profiles at the equilibrium)

Proof of Corollary (20).

Recall that under homogeneous beliefs, the optimal portfolio profiles satisfy:

d

ds
[h∗∗i (s)] =

h′i,g(s) if h∗∗i (s) < hi,g(s),
Ti,o(hi(s))
T (s) , if h∗∗i (s) > hi,g(s).

(69)

Due to the linear risk tolerance, we get:

d

ds
[h∗∗1 (s)] = h′1,g(s), if h

∗∗
1 (s) < h1,g(s). (70)

d

ds
[h∗∗2 (s)] = h′2,g(s), if h

∗∗
2 (s) < h2,g(s). (71)

d

ds
[h∗∗1 (s)] =

τ1 + b1h∗∗1 (s)

τ + b1h∗∗1 (s) + b2h
∗∗
2 (s)

, if h∗∗1 (s) > h1,g(s). (72)

d

ds
[h∗∗2 (s)] =

τ2 + b2h∗∗2 (s)

τ + b1h∗∗1 (s) + b2h
∗∗
2 (s)

, if h∗∗2 (s) > h2,g(s). (73)

This system of ordinary differential equations can be explicitly solved if the
cautiousness are opposite b1 = b = −b2 (see for example, Carr and Madan,
2001). Indeed, we have:

Case 1: if h∗∗1 (s) > h1,g(s) and h∗∗2 (s) > h2,g(s),

h′∗∗1 (s)

h
′∗∗
2 (s)

=
τ1 + bh

∗∗
1 (s)

τ2 − bh∗∗2 (s)
.

Substituting h∗∗1 (s) = s− h∗∗2 (s) leads to a quadratic equation for h∗∗2 (s):

1

2
[h∗∗2 (s)]

2 −
[s
2
+
τ

2b

]
h∗∗2 (s) +

τ2s+ η

2b
= 0,

with solution:

h∗∗2 (s) =
s

2
+
τ

2b
−
√[s

2
+
τ

2b

]2
− τ2s+ η

2b
,

from which we deduce:

h∗1(s) =
s

2
− τ

2b
+

√[s
2
+
τ

2b

]2
− τ2s+ η

2b
.

We must set c ≤ τ1τ2
b
. Then, let k be defined from equation:

η =
τ1τ2
b

− c2.
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We finally deduce that the optimal payoffs are given by:

h∗∗1 (s) =
s

2
− τ

2b
+

√(
s

2
+
τ2 − τ1
2b

)
+ c2,

h∗∗2 (s) =
s

2
− τ

2b
−
√(

s

2
+
τ2 − τ1
2b

)
+ c2. (74)

Case 2: if h∗∗1 (s) < h1,g(s) and h
∗∗
2 (s) < h2,g(s),

h∗∗1 (s) = h1,g(s),

h∗∗2 (s) = h2,g(s). (75)

Case 3: if h∗∗1 (s) > h1,g(s) and h∗∗2 (s) < h2,g(s),

h∗∗1 (s) = s− h2,g(s),
h∗∗2 (s) = h2,g(s). (76)

Case 4: if h∗∗1 (s) < h1,g(s) and h∗∗2 (s) > h2,g(s),

h∗∗1 (s) = h1,g(s),

h∗∗2 (s) = s− h1,g(s). (77)
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Appendix 4. (Graphical illustrations of the investor’s and bankers’s
payoffs for VaR constraints)

Fig. A.4.1. (µ = 7%, σ = 20%)
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Fig. A.4.2. (µ = 4%, σ = 20%)
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Fig. A.4.3. (µ = 15%, σ = 20%)
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Fig. A.4.4. (µ = 7%, σ = 10%)
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Fig. A.4.5. (µ = 7%, σ = 30%)
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Appendix 5. (Graphical illustrations of the investor’s and bankers’s
payoffs for delta-neutrality constraints)

Fig. A.5.1. (µ = 7%, σ = 20%)
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Fig. A.5.2. (µ = 4%, σ = 20%)
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Fig. A.5.3. (µ = 15%, σ = 20%)
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Fig. A.5.4. (µ = 7%, σ = 10%)
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Fig. A.5.5. (µ = 7%, σ = 30%)
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