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Abstract

We compare two longevity risk management contracts in retirement: a
collective arrangement that distributes the risk among participants, and a
market-provided annuity contract. We evaluate the contracts’ appeal with re-
spect to the retiree’s welfare, and the viability of the market solution through
the financial reward to the annuity provider’s equity holders. The collec-
tive agreement yields marginally higher individual welfare than an annuity
contract priced at its best estimate, and the annuity provider is incapable of
adequately compensating its equity holders for bearing longevity risk. There-
fore, market-provided annuity contracts would not co-exist with collective
schemes.
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1 Introduction

Longevity risk is a looming threat to pension systems worldwide. In contrast

to mortality risk, which is the idiosyncratic risk surrounding an individual’s actual

date of death given known survival probabilities, longevity risk is the risk of mis-

estimating future survival probabilities.1 This systematic risk can be distressful

for retirement financing because longevity-linked assets are not yet commonplace

(Tan et al., 2015).

The global transition of funded pensions from Defined-Benefit (DB) to Defined-

Contribution (DC) plans2 precipitates the need for a sustainable means of man-

aging mortality and longevity risks, which have conventionally been borne by

the DB plan sponsor. The essence of a DC setup grants individuals full free-

dom in managing their retirement capital, which is accumulated at a statutory

rate of saving. While the optimal, rational individual response to mortality risk

in a frictionless setting is to pool that risk (Yaari, 1965; Davidoff et al., 2005;

Reichling and Smetters, 2015), the corresponding response to longevity risk is less

evident. Individuals could either bear it under a collective arrangement, or offload

it at a cost by purchasing an annuity contract from an equity-backed insurance

company. Both options allow individuals to pool mortality risk, but entail different

implications with regard to longevity risk. We compare these arrangements to as-

certain the option that maximizes individuals’ expected utility. We also investigate

the viability of the annuity contracts market by measuring the risk-return tradeoff

with respect to longevity risk for the equity holders of the annuity contract provider.

Since the introduction of Group Self-Annuitization (GSA) by Piggott et al.

(2005), retirement schemes in which individuals bear systematic risks as a col-

lective, but pool idiosyncratic ones have captured the attention of scholars. The

main novelty of our work is to concurrently model individual preferences and the

business of an equity-holder-backed annuity provider when longevity risk exists.

Despite the equity holders’ critical role in the provision of contracts, comparisons

of the GSA and annuity contracts that include longevity risk (e.g., Denuit et al.,

2011; Richter and Weber, 2011; Maurer et al., 2013; Qiao and Sherris, 2013) dis-

regard this aspect.

In order to credibly offer insurance against a systematic risk, the annuity provider

requires a buffer capital that is constituted from either equity contribution and/or

from contract loading to absorb unexpected shocks.3 Either of these sources of

1Longevity and mortality risks are also referred to as macro- and micro-longevity risks, respec-

tively.
2In 1975, close to 70% of all U.S. retirement assets were in DB plans. In 2015, DB assets

accounted for only 33% of total retirement assets. Over the same period, assets in DC plans and In-

dividual Retirement Accounts (IRAs) grew from 20% to 59% (Investment Company Institute, 2016).
3It would be equivalent to consider debt issuance to raise capital, and any dividend policy other
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capital has a cost. If the annuity provider solicits capital from equity holders, then

it would have to compensate equity holders with a longevity risk premium. If the

provider charges too high a loading, then individuals would prefer the GSA over

the annuity contract (e.g., Hanewald et al., 2013; Boyle et al., 2015).4 Therefore,

the existence of an annuity contract market hinges on the provider’s ability to set a

contract price such that all stakeholders are willing to participate in the market.

Existing estimates on individuals’ willingness to pay to insure against longevity

risk are low. Individuals are willing to offer a premium of between 0.75%

(Weale and van de Ven, 2016) to 1% (Maurer et al., 2013) for an annuity contract

that insures them against longevity risk without default risk. In contrast, the cap-

ital buffer that the annuity provider would have to possess to restrain its default

risk is much larger (e.g., about 18% of the contract’s best estimate value to limit

the default rate to 1% in Maurer et al., 2013). These estimates suggest that the an-

nuity provider has little capacity to compose its buffer capital only from contract

loading. Equity capital provision is thus necessary, contrary to the common as-

sumption that the full amount of the annuity provider’s buffer capital is composed

of loading charged to the individuals, as adopted in Friedberg and Webb, 2007;

Richter and Weber, 2011; Maurer et al., 2013; Boyle et al., 2015. We attempt to

reconcile the gap between the maximum loading that individuals are willing to

pay, and the minimum capital necessary to provide annuity contracts that individ-

uals are willing to purchase, by introducing equity holders. While analyses that

incorporate both policy and equity holders exist in insurance (e.g., Filipović et al.,

2015; Chen and Hieber, 2016), they are unforeseen in the literature on the compar-

ison of the GSA with annuity contracts, which focuses on policy holders only.

Consistent with the inchoate market for longevity-hedging instruments, we as-

sume that the annuity provider has no particular advantage in bearing longevity

risk.5 Moreover, the annuity provider is required to maintain the value of its assets

above the value of its liabilities–a plausible regulatory requirement for such a for-

profit entity. In contrast to the literature on collective schemes, which largely fo-

cuses on inter-generational risk-sharing (e.g., issues concerning its fairness and sta-

than a one-off dividend payment to equity holders (i.e., any gains before the end of the investment

horizon are re-invested). This is because the Miller-Modigliani propositions on the irrelevance of

capital structure (Modigliani and Miller, 1958) and dividend policy (Miller and Modigliani, 1961)

on the market value of firms hold in our setup, which excludes taxes, bankruptcy costs, agency costs,

and asymmetric information.
4While allocating retirement wealth between the annuity contract and the collective scheme is

conceptually appealing, for the feasibility of a collective scheme, individuals can select only one

option in our setting (e.g., mandatory participation in a collective scheme averts adverse selection,

achieves cost reduction, etc., Bovenberg et al., 2007).
5Insurance companies may in practice have a comparative advantage in bearing longevity risk,

such as the synergy of product offerings in terms of risk-hedging (Tsai et al., 2010), or the po-

tential of life insurance sales in hedging longevity risk (i.e., natural hedging) (Cox and Lin, 2007;

Luciano et al., 2015).
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bility with respect to the age groups, see Gollier, 2008; Cui et al., 2011; Beetsma et al.,

2012; Chen et al., 2015, 2016), we focus instead on risk-sharing between the indi-

viduals and the annuity provider’s equity holders within a generation.

We begin by assuming that the annuity provider composes its buffer entirely

from equity capital. In return for their capital contribution, equity holders receive

the annuity provider’s terminal wealth as a lump sum dividend. Due to equity-

capital-cushioning, the annuity contract provides retirement benefits that have a

lower standard deviation across scenarios. However, as equity capital is finite,

there is a positive (albeit small) probability that the annuity provider will default.

We infer the maximum loading that individuals are willing to offer, and the equity

holders’ risk-adjusted investment return.

We find that individuals marginally prefer the collective scheme. The Cer-

tainty Equivalent Loading (CEL), i.e., the level of loading on the annuity contract

at which individuals would derive the same expected utility under either option,

is slightly negative (i.e., -0.35% to -0.052%; Table 3). Furthermore, exposure to

longevity risk does not enhance the equity holders’ risk-return tradeoff if the annu-

ity provider sells zero-loading contracts, because it yields only half of the Sharpe

ratio of an identical investment without exposure to longevity risk, as well as a

negative Jensen’s alpha (Table 4). Consequently, the market-provided annuity con-

tract would not co-exist with the collective scheme. The implication of our results

would be even stronger if there were frictional costs, e.g., financial distress, agency,

regulatory capital, and double taxation costs, because the equity holders would re-

quire a higher financial return from the capital they provide.

To further comprehend the tradeoff that an individual faces when selecting a

contract, we carry out sensitivity tests with respect to the individual’s characteris-

tics, longevity risk, and the annuity provider’s default risk. Our inference is robust

to the deferral period (Table 7), stock exposure (Table 8), and parameter uncertainty

surrounding the longevity model’s time trend (Table 11). Situations characterized

by extremities can intensify individual preference for either contract in an intuitive

manner. For instance, the annuity contract is attractive to highly risk-averse in-

dividuals because its retirement benefits are less volatile (Table 6). If the equity

capital is halved, the annuity provider’s default risk rises markedly, and the annuity

contract becomes less desirable to individuals (Table 9).

Greater uncertainty surrounding longevity evolution could lead to preference

for the annuity contract, on the condition that the contract provider restrains de-

fault risk by raising more equity capital. If, for example, the longevity model’s

time trend variance is doubled, risk-averse individuals are willing to pay as much

as 3.2% in loading for the annuity contract, but only if the provider has no default

risk (Table 13). Under an alternative longevity model, which exhibits wider varia-

tion of survival at older ages, risk-averse individuals prefer the collective scheme,
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but only if the provider’s default risk is eliminated too (Table 15). Despite any pos-

itive loading that individuals offer, none of the cases that we analyze show that the

level of loading is sufficient to compensate equity holders (Tables 13 and 15). This

is because in situations of heightened longevity risk, the equity holders’ dividend

is also more volatile, which compromises the financial performance of longevity

risk exposure. Thus, there is no compelling support for annuity contract provision

when individuals could form a collective scheme.

We present our model in Section 2 and calibrate it in Section 3. We first discuss

the Baseline Case results from the individual’s perspective (Section 4), then from

the equity holders’ point of view (Section 5). Section 6 is devoted to sensitivity

tests on the individuals’ traits, stock exposure, the annuity provider’s leverage ratio,

as well as the longevity model’s attributes. We conclude in Section 7.

2 Model Presentation

We devise a model to investigate the welfare of individuals under a collective

retirement scheme and a market-provided deferred variable annuity contract. The

setting comprises a financial market with a constant risk-free rate and stochastic

stock index, homogenous individuals with stochastic life expectancies, and two

financial contracts for retirement.6 We define and discuss these elements in detail

in this section.

2.1 Financial Market

In a continuous-time financial market, the investor is assumed to be able to in-

vest in a money market account and a risky stock index. The financial market is

incomplete due to the lack of longevity-linked securities. We assume that annual

returns to the risk-free asset are constant, r. The money market account is fully

invested in the risk-free asset.

The value of the stock index at time t, which is denoted by St , follows the diffu-

sion process, dSt = St (r+λSσS) dt +StσS dZS,t . ZS is a standard Brownian motion

with respect to the physical probability measure, σS is the instantaneous stock price

volatility, and λSσS is the constant stock risk premium.

2.2 Individuals

At time t0 = 0, individuals who are aged x = 25 either form a collective pen-

sion scheme or purchase a deferred annuity contract with a lump sum capital that

6We abstract from model uncertainty by assuming that the stochastic dynamics underlying the

financial assets and life expectancies are known.
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is normalized to one. Both retirement contracts commence retirement benefit pay-

ments at age 66, up to the maximum age of 95, conditional on the contract holders’

survival. Individuals’ lifespan is determined by survival probabilities that are mod-

eled by the Lee and Carter (1992) model presented in Section 2.2.1.

2.2.1 Life Expectancy

We assume that individual mortality rates evolve independently from the finan-

cial market. Although productive capital falls as the population ages, empirical

evidence on the link between demographic structure and asset prices is mixed

(Erb et al., 1994; Poterba, 2001; Ang and Maddaloni, 2003; Arnott and Chaves,

2012).

We adopt the Lee and Carter (1992) model, which is widely used (e.g., by

the U.S. Census Bureau and the U.S. Social Security Administration) and stud-

ied. This is a one-factor statistical model for long-run forecasts of age-specific

mortality rates. It relies on time-series methods and is fitted to historical data.

By relying on population mortality data, we eschew adverse selection that plagues

the annuity market, i.e., the individuals who purchase an annuity typically have a

longer average lifespan than the general population (Mitchell and McCarthy, 2002;

Finkelstein and Poterba, 2004).

The log central death rate for an individual of age x in year t, log(mx,t)7 is

assumed to linearly depend on an age-specific constant, and an unobserved period-

specific intensity index, kt :

log(mx,t) = ax +bxkt + εx,t (1)

exp(ax) is the general shape of the mortality schedule across age; bx is the rate of

change of the log central death rates in response to changes in kt , whereas the error

term, εx,t , is normally distributed with zero mean and variance σ 2
ε .

The Lee and Carter (1992) model is defined for the central death rates. By an

approximation, we apply it to model the annual rate of mortality: letting qx,t be the

probability that an individual of age x who is alive at the start of year t, dying before

year t + 1, qx,t ≃ 1− exp(−mx,t). The probability that someone who is aged x at

time t0 is alive in s-year time, s px, is then s px = Πs−1
l=0 (1−qx+l,t+l). We denote the

conditional probability in year t ≥ t0 that an individual of age x at time t will survive

for at least s more years as s p
(t)
x , s p

(t)
x = Πs−1

l=0 (1−qx+l,t) = exp
(
∑s−1

l=0 −mx+l,t
)
.8

7mx, t is the ratio of Dx, t , the number of deaths of an individual aged x in year t, over Ex, t , the

exposure, defined as the number of aged x individuals who were living in year t. mx, t =
Dx, t

Ex, t
.

8This is an exponentiated finite sum of log-normal random variables that has no known analytical

distribution function. Therefore, we resort to simulation for our analysis. Alternate ways to proceed
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While many refinements of Lee and Carter (1992) exist (e.g., the two-factor

model of Cairns et al., 2006, the addition of cohort effects in Renshaw and Haberman,

2006), the model is not only reasonably robust to the historical data used, but also

produces plausible forecasts that are similar to those from extensions of the model

(Cairns et al., 2011).

2.2.2 Welfare

Individuals maximize expected utility in retirement.9 At this time, benefits

from the retirement contracts constitute the individual’s only source of income for

the individuals. We consider individuals who exhibit Constant Relative Risk Aver-

sion (CRRA), and evaluate their utility in retirement by Equation (2).

U (Ξ) =

T̂

tR

e−β t Ξ1−γ
t

1− γ t−t0
p25 dt (2)

t−t0
p25 = probability that someone who is 25 years old in year t0

is alive in year t

β = subjective discount factor

γ = risk aversion parameter, γ > 1

Ξt = retirement income in year t

tR = retirement year, i.e., tR = t0 +66−25

T = year of maximum age, i.e., T = t0 +95−25

2.3 Financial Contracts for Retirement

There are two financial contracts for retirement. The first is a collective pen-

sion called the Group Self-Annuitization (GSA) scheme. The second is a Deferred

Variable Annuity (DVA) contract offered by an annuity provider who is backed by

equity holders. We describe both contracts in this section. Appendix A elaborates

on the rationale of the definition and provision of the contracts.

The financial contracts specify the distribution of financial and longevity risks

among the stakeholders. As the contracts are intended to underscore longevity risk,

both treat stock market risk identically - the risk is fully borne by the contract hold-

ers. The benefits due, henceforth known as entitlements, are fully indexed to the

same underlying financial portfolio called the reference portfolio (e.g., a portfolio

that is 20% invested in the stock index, and 80% in the money market account).

include estimating the quantiles of the random survival probabilities (e.g., Denuit et al., 2011), or the

Taylor series approximation by Dowd et al. (2011).
9We can ignore bequest motives as both contracts provide income only when the individual is

still alive.
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Thus, if the DVA provider adopts the reference portfolio’s investment policy, the

provider is hedged against financial market risk.

Longevity risk distribution, however, distinguishes the two contracts. Under

the GSA, it is shared equally among individuals. Under the DVA, the risk is borne

by the equity holders up to a limit implied by their equity contribution, beyond

which the DVA provider defaults. Both contracts stipulate to distribute mortality

credit according to the survival probabilities, conditional on the date of contract

sale. The DVA provider (that is, its equity holders) bears the risk that the survival

probability forecast deviates from their realized values, when the provider is re-

quired to either dip into its equity capital to finance underestimation of longevity,

or to collect the excess arising from overestimation of longevity. After the final

payment is made, the provider disburses any surplus to equity holders as a divi-

dend.

Due to the non-existence of financial assets that are associated with longevity

risk, the risk cannot be hedged by the DVA provider. Additionally, we assume that

the number of individuals who either purchase the DVA or participate in a GSA is

large enough such that by the Law of Large Numbers, the proportion of surviving

individuals within each pool coincides with that implied by the realized survival

probabilities, so we can eliminate mortality risk.10

2.3.1 Deferred Variable Annuity (DVA)

The DVA contract is parametrized by an actuarial construct called the Assumed

Interest Rate (AIR), h := {ht}T
t=t

0
. The AIR is a deterministic rate that determines

the cost, A, of a contract sold to an individual who is aged x at time t0 as follows:

A(h, F, t0, x) := (1+F)

T̂

t=tR

t−t0
p
(t0)
x exp(−ht × (t − tR)) dt (3)

t−t0
p
(t0)
x = conditional probability in year t0

that a individual of age x lives

for at least t − t0 more years

h = AIR

F = loading factor

tR = retirement year, i.e., tR = t0 +66−25

10The GSA in our setting is a specific case of the GSA of Piggott et al. (2005) because by omitting

mortality risk and assuming an identical investment portfolios for every member, the pooling of

idiosyncratic risks–a defining feature of the GSA– is irrelevant.
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The loading factor, F , is a proportional one-off premium that the DVA provider

attaches to a contract. A contract that is priced at its best estimate has a loading

factor of zero, F = 0.

The DVA contract is indexed to a reference investment portfolio that follows

a deterministic investment policy, θ := {θt}T
t=t

0
. θt is the fraction of portfolio

wealth allocated to the risky stock index at time t, while the remaining 1− θt is

invested in the money market account. Let W
Re f

t (θ) be the value of the refer-

ence portfolio at time t. The dynamics of the reference portfolio are thus dW
Re f

t =
W

Re f
t (r+θtλSσS) dt +W

Re f
t θtσS dZS,t . Using an annuitization capital that is nor-

malized to one, the individual purchases A(h∗, F, t0, x)−1 unit(s) of DVA con-

tract(s), and is entitled to Ξ, for every year t in retirement, tR ≤ t ≤ T .11

Ξ(h, F, t, x) :=
exp(−ht × (t − tR))

A(h, F, t0, x)
×

W
Re f

t (θ)

W
Re f

t0 (θ)
(4)

W
Re f

t (θ) = value of the reference portfolio at time t

The AIR influences the expectation and dispersion of the benefit payments over

time. For instance, the fund units are front- (back-) loaded (i.e., due in the earlier

(later) years of retirement) under a higher (lower) AIR.12

We demonstrate in Appendix A that for any given θ , the AIR that maximizes

the individual’s expected utility in retirement is Equation (5), which we refer to as

the optimal AIR, h∗. h∗ depends on the individual’s preference and financial market

parameters. It serves as the AIR of both the DVA and GSA.

h∗ (t, θt) := r+
β − r

γ
−

1− γ

γ
θtσS

(
λS −

γθtσS

2

)
(5)

t = time index, t, tR ≤ t ≤ T

r = constant short rate

β = subjective discount factor

γ = risk aversion parameter

θt = fraction of wealth allocated to the stock index

σS = diffusion term of the stock index

λS = Sharpe ratio of the stock index

11The benefits adjust instantaneously with the value of the portfolio to which the contract is

indexed. Maurer et al. (2014) make the case for smoothing of the benefits, which is advantageous to

both the policyholder and the contract provider.
12Let r̃ denote the reference portfolio’s expected return, and suppose h is time-invariant. Then

an annuity contract with h = r̃ has a constant expected benefit payment path. When h < r̃, then the

expected benefit stream is upward sloping, with increasing variance as the individual ages. Con-

versely, when h > r̃, the expected benefit stream is downward sloping, and the variance is higher

during the initial payout phase. Horneff et al. (2010) provides an exposition on retirement benefits

under numerous AIRs and reference portfolios.
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The DVA provider merely serves as a distribution platform for annuity con-

tracts. It acts in the best interest of its equity holders, who are assumed to outlive

the individuals. The equity holders provide a lump sum capital that is proportional

to the value of its estimated liabilities in the year t0.13 At every date t ≥ t0, the DVA

provider’s asset value has to be at least equal to the value of its estimated liabili-

ties. In any year t0 ≤ t ≤ T , if the DVA provider fails to meet the 100% solvency

requirement, then the DVA provider defaults. Regulatory oversight is introduced

for the DVA provider, because as a for-profit entity, the DVA provider may have an

incentive to take excessive risk at the individuals’ expense (Filipović et al., 2015),

by adopting a high leverage ratio, for example. The individual receives a benefit

that is equal to the DVA entitlement,

ΞDVA(h∗, F, t, x) = Ξ(h∗, F, t, x) (6)

in every year of retirement, conditional on the individual’s survival and the DVA

provider’s solvency. Ξ(.) is Equation (4) while h∗ is Equation (5).

In the event of default, the residual wealth of the DVA provider is distributed

among all living individuals, in proportion to the value of their contracts that re-

mains unfulfilled. Equity holders receive none of the residual wealth. We impose

a resolution mechanism that obliges individuals to use the provider’s liquidated

wealth to purchase an equally-weighted portfolio of zero-coupon bonds, of maturi-

ties from the year of default if the individual is already retired, or from the year of

retirement, until the year of maximum age. Assuming that the bond issuer poses no

default risk, then the individual has a guaranteed income until death, but receives

no mortality credit. If the individual dies before the maximum age, the face value

of the bonds that mature subsequently is not bequeathed. This resolution to insol-

vency is harsh on the individuals because it eliminates the mortality credit, but it

reflects the empirical evidence that individuals substantially discount the value of

an annuity that poses default risk (Wakker et al., 1997; Zimmer et al., 2009).

2.3.2 Group Self-Annuitization (GSA)

Similar to the DVA, the GSA’s entitlement is parameterized by the optimal AIR,

h∗, and is indexed to a reference portfolio with the investment policy θ . The aged-x

individual receives A(h∗, 0, t, x)−1 contract(s) for every unit of contribution at time

t. In any year t ≥ tR, the GSA’s entitlement depends on the reference portfolio’s

value at time t, W
Re f

t (θ).

The description of the GSA thus far is identical to a DVA contract with zero

loading, F = 0. The GSA’s distinctive feature is that the entitlements are adjusted

according to its funding status. Let the funding ratio at time t, FRt , be the ratio

of the GSA’s value of assets, taking into account the investment return from the

13The estimation of the value of liabilities is explained in Appendix B.
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preceding year, over the best estimated value of its liabilities.14 For any year t in

retirement, tR ≤ t ≤ T , the contract holder is entitled to ΞGSA(h∗, 0, t, x).

ΞGSA(h∗, 0, t, x) = Ξ(h∗, 0, t, x)×
FRt

1
(7)

exp(−h∗ (t, θt)× (t − tR))

A(h∗, 0, t0, x)
×

W
Re f

t (θ)

W
Re f

t0 (θ)
×FRt

FRt = Funding Ratio in year t

The first two terms of Equation (7) are identical to the entitlement for a DVA

contract with zero loading, Equation (4). The final term of Equation (7) represents

the adjustment. If FRt is smaller (larger) than 1, then the GSA entitlement, ΞGSA,

is lower (higher) than the DVA entitlement, ΞDVA, in year t. Equation (7) ensures

that the GSA is 100% funded in any year.

3 Model Calibration

We consider three groups of individuals, distinguished by their risk aversion

levels, γ = 2, 5, and 8.15 Individuals are otherwise homogenous. They have an

annual subjective discount factor of 3%,16 are aged 25 at time t0 = 0, and use a

lump sum that is normalized to one, to either purchase DVA(s), or to join the GSA

at time t0. Both contracts stipulate payment of annual retirement benefits from age

66 until age 95, conditional on the individual’s survival in any year, according to

the contract specification in Section 2.3.

The portfolio to which the DVA and GSA are indexed is either fully invested

in the money market account (θ = 0), or 20% invested in equities and 80% in the

money market account (θ = 20%). These allocations yield the optimal AIR range

of 3-4% (Table 1) that is not only observed in the annuity market (Brown et al.,

2001), but also typically considered in the related literature (Koijen et al., 2011;

Maurer et al., 2013). In Section 6.3, we explore alternative investment policies and

demonstrate that they uphold the same results as when θ = 0, 20%.

We assume that the DVA provider’s equity holders provide a lump sum cap-

ital at date t0 that is 10% of the contract’s best estimate price. The level of eq-

uity capital contribution is set such that the annuity provider’s leverage ratio (i.e.,

14Estimation of the GSA liabilities is identical to the estimation of liabilities of the DVA provider.

See Appendix B for details.
15Using survey responses from the Health and Retirement Study on the U.S. population,

Kimball et al. (2008) estimate that the mean risk aversion level among individuals is 8.2, with a

standard deviation of 6.8.
16While field experiments reveal a wide range of implied subjective discount factor (e.g., see

Table 1 in Frederick et al., 2002), we choose a value that is commonly adopted in welfare analy-

sis. For example, in similar analyses on retirement income, Feldstein and Ranguelova (2001) and

Hanewald et al. (2013) adopt a subjective discount factor of around 2%.

11



Leverage Ratio := 1−Value of Equity/Value of Assets) is 90%. This reflects the

average of the leverage ratio of U.S. life insurers between 1998-2011.17

To provide descriptive calculations on individual welfare under the GSA and

the DVA, we calibrate the financial market and life expectancy models to U.S.

data. These parameters constitute our Baseline Case.

3.1 Financial Market

We adopt a constant interest rate of r = 3.6%. The stock index has an an-

nualized standard deviation of σS = 15.8%, and an instantaneous Sharpe ratio of

λS = 0.467. This implies that the stock risk premium is λSσS = 7.39%. These

parameters reflect the performance of the market-capitalization-weighted index of

U.S. stocks and the yield on the three-month U.S. Treasury bill over the recent past.

3.2 Life Expectancy

We estimate the Lee and Carter (1992) model using U.S. female death counts,

Dx,t , and the population’s exposure to risk, Ex,t , from 1980 to 2013 from the Human

Mortality Database.18 The mortality rate for age group x in year t is thus Dx,t/Ex,t .

Estimation of the Lee and Carter (1992) model proceeds in three steps. First,

kt is estimated using Singular Value Decomposition. In the second step, ax and bx

are estimated by Ordinary Least Squares on each age group, x. In the third step,

kt is re-estimated by iterative search to ensure that the predicted number of deaths

coincides with the data. For identification of the model, we impose the constraints

∑x bx = 1 and ∑t kt = 0.

The estimated model is used for forecasting by assuming an ARIMA(0, 1, 0)
time series model for the mortality index kt .

kt = c+ kt−1 +δt (8)

δ ∼ N
(
0,σ 2

δ

)

17Based on the A.M. Best data used in Koijen and Yogo (2015), the leverage ratio of U.S.

life insurers between 1998 to 2011 is 91.36% on average. Assuming that assets are composed

of premium and equity capital only, and normalizing Premium = 1, we have Leverage Ratio =
1−Equity/(1+Equity), which we use to solve for Equity when the Leverage Ratio ≈ 90%.

18This fitting period is selected using the method of Booth et al. (2002). It involves defining

fitting periods starting from the first year of data availability till the last year of data availability, and

progressively increasing the starting year. A ratio of the mean deviance of fit of the Lee and Carter

(1992) model with the overall linear fit is computed for these fitting periods. The period for which

this ratio is substantially smaller than that for periods starting in previous years is chosen as the best

fitting period.
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Forecasts of the log of the central death rates for any year t ′, t ′ ≥ t, are given

by Et

[
log

(
mx,t ′

)]
= ax + bxk̂t ′ , with k̂t ′ = (t ′ − t)c+ kt . The realized log of the

mortality rate incorporates the independently and identically normally distributed

error terms εx ∼ N
(
0, σ 2

x

)
and δ ∼ N

(
0,σ 2

δ

)
, with cov(εx,t1 , δt2) = 0 for any

t1, t2 ∈ [t0, T ] and x. Therefore, the conditional expected forecast error of log (mx,t)
is zero.

We estimate that ĉ = −1.0689, which implies a downward trend for kt , while

the estimate of σδ is σ̂δ = 1.781. In Figure 1, we present the estimates for ax, bx,

and σx. From age 10 onwards, ax is increasing in age. Estimates for bx suggest

that the change in the sensitivity of age groups to the time trend, k, is not monotone

across ages. As for σx, it decreases in age non-monotonically until around age 85.

With these estimates, 83.8% of the variation in the data is explained.

In Figure 2, we display a fan plot of the fraction of living individuals by age,

between 25 and 95, with the population at age 25 normalized to one. The plot

implies that the fraction of living individuals in retirement can vary over a wide

range (i.e., the difference between the maximum and minimum realization). At its

peak at age 88, the range of the proportion of living individuals is as wide as 30%.
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Figure 1: Lee and Carter (1992) Parameter Estimates

The top panel shows the estimates for ax, the middle panel displays the esti-

mates for bx, whereas the bottom panel presents the estimates of σx, for the

Lee and Carter (1992) model as specified by Equation (1). The calibration sample

is the U.S. Female Mortality data from 1980 to 2013, from the Human Mortality

Database. The estimate of c is −1.0689 and that of σδ is 1.781. 83.8% of variation

of the sample is explained by these estimates.
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Figure 2: Lee and Carter (1992) Fan Plot

This figure presents the fan plot of the simulated fraction of living individuals (i.e.,

the population of 25-year-olds is normalized to one) over 10,000 replications when

longevity is modeled according to Lee and Carter (1992), using estimates in Figure

1. Darker areas indicate higher probability mass.
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3.3 Contract Characteristics

In order to develop intuition and grasp the contracts’ definition, we discuss the

characteristics of the GSA and the DVA under the calibrated parameters. Table 1

presents the optimal AIRs as given by Equation (5), and evaluated at the parameters

outlined in Sections 3.1 and 3.2. The optimal AIRs have a range of 3-4% which

is common in the annuity market (Brown et al., 2001) and in the related literature

(Koijen et al., 2011; Maurer et al., 2013).

Table 1: Baseline Case: Optimal AIR, h∗ (%)

This table shows the optimal AIR, Equation (5), of the DVA and GSA contracts by

the individuals’ risk aversion parameter, γ . The underlying portfolio to which the

contracts are indexed is either 100% invested in the money market account (θ = 0),

or 20% in the risky stock index and 80% in the money market account (θ = 20%).

θ γ
(%) 2 5 8

0 3.31 3.50 3.54

20 4.00 4.48 4.48

Figure 3 is a box plot of the benefits that individuals receive under the DVA and
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the GSA. The median benefits of both contracts grow along the retirement horizon

due to larger mortality credits at higher ages. For the DVA, the median value is

also the maximum, because the surplus from life expectancy misestimates belongs

to the equity holders, not to the individuals.

The GSA yields more instances of positive than negative adjustments to bene-

fits that are 1.5-time larger than the range between its 75th and 25th percentiles. We

infer this from the relative density of “+” symbols above and under the box (Figure

3, top panel). When the individual attains the maximum age of 95, benefits as large

as 25% more than the median could occur. In contrast, in the worse scenario at

the same age, the reduction in benefits relative to the median is, at most around

13% only, at most. This asymmetric effect on benefits arises from the non-linearity

of the Lee and Carter (1992) model. For error terms of the same magnitude (i.e.,

{εx,t}T
t=t0

in Equation (1) and {δt}T
t=t0

in Equation (8), for any x ∈ Z∩ [25, 95]),
overestimation of the log of the central death rates generates a larger entitlement

adjustment than underestimation does. Besides, when the DVA provider defaults,

the individual is at risk of receiving a much lower benefit. The worst case under

the GSA entails up to a 30% lower benefit relative to the median at the maximum

age.

The box plots indicate that while both contracts offer comparable benefits at

the median, those of the GSA have higher standard deviations across scenarios due

to the entitlement adjustments, but upward adjustments are more prevalent than

downward ones. The DVA offers less volatile benefits, but is susceptible to severe

low benefit outcomes when the provider defaults. These are the main features that

the individuals weigh in utility terms.

16



Figure 3: Box Plots of GSA and DVA Benefits

The figure presents the box plot of benefits, for the GSA (top panel), and the DVA

(bottom panel), for an individual with a risk aversion level of γ = 5, at ages 66,

80 and 95. The underlying portfolio is invested in the money market account only.

The line in the middle of the box is the median, while the edges of the box represent

the 25th and 75th percentiles. The height of the box is the interquartile range, i.e.,

the interval between the 25th and 75th percentiles. The “+” symbols represent data

points that are 1.5 times larger than the interquartile range.
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4 The Individual’s Perspective

We investigate two settings distinguished by the existence of stock market risk.

In both, there is longevity risk, but in one instance, there is no investment in the

stock market, θ = 0, and so the financial return is constant at r, whereas in the

other, θ = 20% is invested in the risky stock index while the remaining 80% is

allocated to the money market account. All results are based on simulations with

500,000 replications unless specified otherwise. The code that produces all figures

and estimates in Sections 4 and 6 are available from the authors upon request.

4.1 Cumulative Default Rate

We measure the GSA provider’s default rates with the Cumulative Default Rate,

an estimate of the probability that the DVA provider defaults during the individu-

als’ planning horizon.

Let Dt be the indicator function that the DVA provider has defaulted in any year

t ′, t0 < t ′ ≤ t ≤ T . For example, if the DVA provider defaults in the year t∗, then

Dt = 1 for t ≥ t∗ and Dt = 0 for t < t∗. Additionally, Dt0 ≡ 0 because the contracts

are sold at their best estimate price, and the equity contribution is non-negative.

The marginal default rate in year t, d (t) is the probability that the annuity

provider defaults in year t, conditional on not having defaulted in previous years.

d (t) := Marginal Default Rate in year t

=
E [Dt ]

1−E [Dt ]
(9)

We define the Cumulative Default Rate as

Cumulative Default Rate := 1−ΠT
t=t0

(1−d (t)) (10)

d (t) = Equation (9)

The default rates in the Baseline Case are at most 0.01% (Table 2). As the AIR

determines whether the bulk of benefits are due earlier or later in retirement, when

combined with the fact that longevity forecast errors are larger at longer horizons,

the DVA provider’s default rates are inversely related to the AIRs. A higher AIR

results in a payment schedule with benefits mostly due earlier in retirement. As

such, the longevity estimates are accurate when most of the benefits are paid. Con-

versely, if the AIR is low, benefit payments are deferred to the end of retirement,

when life expectancies are most vulnerable to forecasting errors. Therefore, for a

fixed level of equity capital, the DVA provider is less susceptible to defaults when

the AIR is higher.19 For the risk aversion levels γ = 2, 5, 8, the optimal AIR is

19From the regulator’s perspective, the notion of an annual probability of default, instead of a
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increasing in γ (Table 1), hence the default rates are decreasing in γ (Table 2) for

both θ = 0, 20%. Similarly, the default rates are lower when θ = 20% than when

θ = 0% for all levels of γ because the optimal AIRs are higher under θ = 20%.

Table 2: Baseline Case: Cumulative Default Rates (%)

This table displays the Cumulative Default Rates, Equation (10), of the DVA

provider who sells zero-loading variable annuity contracts with a 40-year defer-

ral period, and has equity capital valued at 10% of the liabilities in the year that

the contract was sold. The underlying portfolio to which the DVA and GSA are

indexed is either fully invested in the money market account (θ = 0), or 20% in the

stock index, and 80% in the money market account (θ = 20%).

θ γ
(%) 2 5 8

0 0.0102 0.0084 0.0082

20 0.0070 0.0038 0.0038

4.2 Individual Preference for Contracts

We quantify the individuals’ preference for the contracts via the Certainty

Equivalent Loading (CEL). This is the level of loading on the DVA (i.e., F in

Equation (3)), that equates an individual’s expected utility under the DVA and the

GSA, i.e., the value such that Equation (11) holds. A positive (negative) CEL sug-

gests that the individual prefers the DVA (GSA).

E

[
U

(
1

1+CEL
×ΞDVA|F=0

)]
= E

[
U
(
ΞGSA

)]
(11)

ΞDVA|F=0 = Retirement benefits, Equation (6),

of a DVA with zero loading, F = 0

ΞGSA = Retirement benefits, Equation (7),

of a GSA

U (.) = Utility function, Equation (2),

Confidence intervals for the CELs are estimated via the Delta Method, for

which more details are in Appendix C.

cumulative one may be more salient. We explore the “Maximum Annual Conditional Probability

of Default”, defined as
max

{t = t0, . . . , T} d (t), and find that the maximum annual default rate in the

Baseline Case is 0.0008%. This suggests that the 10% buffer capital is sufficient to restrict default

rates of DVA providers who are exposed to only longevity risk to existing regulatory limits (e.g.,

Solvency II for insurers in Europe).
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Table 3 presents the CEL in the Baseline Case. The CELs are negative for all

risk aversion levels. This implies that individuals prefer the GSA over the DVA,

but only marginally. If the DVA contracts were to be sold at a discount of between

0.052% and 0.350%, then individuals would be indifferent between the two con-

tracts. Besides, the CEL is increasing in the risk aversion level, γ . This is because

more risk-averse individuals have a greater preference for the DVA benefits’ lower

standard deviation across scenarios.

Table 3: Baseline Case: Certainty Equivalent Loading (CEL) (%)

This table presents the CEL, Equation (11), by the risk aversion levels (γ). Indi-

viduals aged 25 purchase either the DVA or join the GSA with a lump sum capital

normalized to one. The reference portfolio is either fully invested in the money

market account (θ = 0), or is θ = 20% invested in the stock index and 80% in the

money market account. The expected utilities to which the CELs are associated

are computed over individuals’ retirement between ages 66 and 95. The equity

holder’s capital is 10% of the present value of liabilities at the date when the con-

tract is sold. The default rates that ensue at this level of equity capitalization are

shown in Table 2. The 99% confidence intervals estimated by the Delta Method

are in parentheses.

θ γ
(%) 2 5 8

0
-0.350 -0.200 -0.055

[-0.362, -0.339] [-0.211, -0.188] [-0.067, -0.044]

20
-0.349 -0.200 -0.052

[-0.361, -0.338] [-0.216, -0.184] [-0.088, -0.016]

5 The Equity Holders’ Perspective

To evaluate the equity holders’ risk-return tradeoff on longevity risk exposure,

we consider two widely used measures of performance: the Sharpe ratio and the

Jensen’s alpha, of providing capital to the annuity provider, against those of in-

vesting the same amount of capital in the reference portfolio over the same time

period.20 As in Section 4, the annuity provider offers contracts at zero loading.

20The stochastic discount factor, {Mt}T
t=t0

, that follows dMt
Mt

=−r dt −λS dZS, t , allows us to price

any contingent claim exposed to stock market risk only: If Xt is a (random) cash flow generated by a

contingent claim at time t, then its price at time t0 is Et0

[
´ T

t=t0
Mt
Mt0

Xt dt
]
. However, when such pricing

is carried out for claims due on a long horizon, and the market price of stock risk (i.e., the Sharpe

ratio) exceeds its volatility, the price depends on extreme sample paths along which the claim’s return

explodes (Martin, 2012). As the claims are susceptible to severe underpricing when the Monte Carlo

replication sample size is small, we refrain from valuing contingent claims when comparing the

equity holders’ investment opportunities.
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Equity holders contribute 10% of the best estimated value of the DVA provider’s

liabilities at time t0, and receive the terminal wealth of the annuity provider, W
(A)

T ,

as a dividend. When the best estimated value of the DVA provider’s liabilities is

normalized to one, the continuously compounded annualized return of capital pro-

vision, in excess of the risk-free rate of return, is thus R(Aexs) = log
(

W
(A)
T /0.1

)
/

(T − t0)− r. We evaluate the equity holders’ profitability via the Sharpe ratio,

SR = E
[
R(Aexs)

]
/σ (Aexs), and we compute the Sharpe ratio’s confidence intervals in

accordance with Mertens (2002).

The Jensen’s alpha, α , is given by Equation (12) (Jensen, 1968).

R(Aexs) = α +βR(Sexs) +u (12)

R(Sexs) is the annualized return of the stock index in excess of the return on the

money market account, and u is the error term. We estimate Equation (12) by Ordi-

nary Least Squares. α assesses the investment performance of providing capital to

the annuity provider, relative to that of the market portfolio, on a risk-adjusted ba-

sis. A positive α suggests that longevity risk exposure enhances the equity holders’

risk-return tradeoff. When θ = 0, β = 0 due to the assumption that the mortality

evolution is uncorrelated with the financial market dynamics. If in Equation (12),

R(Aexs) is replaced by the annualized return in excess of the risk-free rate of return

for the reference portfolio, then α = 0 and β = θ . This is because the reference

portfolio has identical financial market risk exposure as capital provision, but is not

exposed to longevity risk.

When θ = 0, the annualized excess return of capital provision is between

−0.008 and −0.007% and the standard deviation is 3.9% (Table 4, top panel). Rel-

ative to the zero excess return from investing in the money market account, equity

capital provision is inferior, but the difference is economically insignificant. When

θ = 20%, investing in the DVA provider yields an expected excess return of 1.44%

(Table 4, bottom panel). This is of no material difference with the expected excess

return on the identical financial market portfolio, i.e., θλSσS − θ2σ 2
S /2 = 1.43%

when θ = 20%. However, the standard deviation of excess returns is considerably

higher when equity holders are exposed to longevity risk (i.e., ≈ 5%, Table 4, bot-

tom panel), than when their investment is subject to stock market risk only (i.e.,

θσS = 3.17% with θ = 20%). Consequently, investing in the financial market only

is associated with a Sharpe ratio around 50% higher than the Sharpe ratio of provid-

ing capital to the DVA provider (i.e., 0.29 in Table 4, bottom panel, as compared to

λS − θ σS

2 = 0.4521 when θ = 20%). Thus, if equity holders were risk-neutral, then

the excess returns imply that they would be indifferent between either investment

opportunity. If equity holders were risk averse, then by the Sharpe ratio, investing

21This is the discrete Sharpe ratio, which is the parameter we estimate using simulation replica-

tions, as opposed to the instantaneous Shape ratio, λS (Nielsen and Vassalou, 2004).
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in longevity risk worsens the equity holders’ risk-return tradeoff when the annuity

provider sells the contracts at zero loading. This is corroborated by the negative

Jensen’s alpha of -0.0001. Yet, even at zero loading, individuals prefer the GSA

over the DVA. Any positive loading is infeasible, because it would only intensify

individuals’ preference for the GSA. Therefore, the annuity provider is incapable

of adequately compensating its equity holders for exposure to longevity risk.

Table 4: Baseline Case: Equity Holders’ Investment Performance Statistics

This table displays the equity holders’ mean annualized return in excess of the risk-

free rate of return (E
[
R(Aexs)

]
, %), standard deviation of annualized excess return

(σ (Aexs) , %), the Sharpe ratio (SR) and Jensen’s alpha (E [α ], %), Equation (12), of

capital provision to the DVA provider. The underlying portfolio is either invested in

the money market account only (θ = 0, top panel), or is 20% invested in the risky

stock index, and 80% invested in the money market account (θ = 20%, bottom

panel). The 99% confidence intervals are in parentheses.

θ = 0

Statistic
γ

2 5 8

E
[
R(Aexs)

]
-0.008 -0.007 -0.007

(%) [-0.010, -0.006] [-0.009, -0.005] [-0.008, -0.005]

σ (Aexs) 3.96 3.91 3.89

(%) [3.95, 3.40] [3.90, 3.91] [3.88, 3.90]

SR
-0.002 -0.0017 -0.0017

[-0.0056, 0.0016] [-0.0054, 0.0019] [-0.0053, 0.0020]

E [α ] -0.0001 -0.0001 -0.0001

(%) [-0.0001, -0.0001] [-0.0001, -0.0001] [-0.0001, -0.0001]

θ = 20%

Statistic
γ

2 5 8

E
[
R(Aexs)

]
1.44 1.44 1.44

(%) [1.44, 1.44] [1.44, 1.45] [1.44, 1.45]

σ (Aexs) 5.04 4.95 4.95

(%) [5.03, 5.06] [4.94, 4.96] [4.94, 4.96]

SR
0.29 0.29 0.29

[0.29, 0.29] [0.29, 0.29] [0.29, 0.29]

E [α ] -0.0001 -0.0001 -0.0001

(%) [-0.0001, -0.0001] [-0.0001, -0.0001] [-0.0001, -0.0001]

The box plot in Figure 4 indicates that the medians of the excess returns on

either investing in the DVA provider, or in the portfolio having exactly the same

investment policy as the DVA contract reference portfolio, are comparable. While
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excess returns on the financial market only are less volatile across scenarios, their

maximum is lower than the best excess returns attainable via capital provision.

Therefore, longevity risk exposure allows the equity holders to achieve higher ex-

cess returns in the best scenario, but entails greater downside risk due to the possi-

ble default of the DVA provider.

Figure 4: Box Plot of Equity Holders’ Annualized Excess Return (%): θ = 20%

This figure presents the box plot of the equity holders’ annualized return in excess

of the risk-free rate (%), to either capital provision to the DVA provider (left), or

investing in the reference portfolio (right). The reference portfolio is 20% invested

in the risky stock index and 80% in the money market account. The line in the

middle of the box is the median, while the edges of the box represent the 25th and

75th percentiles. The height of the box is the interquartile range, i.e., the interval

between the 25th and 75th percentiles. The “+” symbols represent data points that

are 1.5 times larger than the interquartile range.
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6 Sensitivity Analysis

In this section, we carry out sensitivity analyses on the individual charac-

teristics, stock exposure, the annuity provider’s leverage, and the magnitude of

longevity risk. These features influence the annuity provider’s default rate and/or

the volatility of the GSA benefits across scenarios and they subsequently alter the

appeal of the GSA and the DVA to individuals.

6.1 Sensitivity to Risk Aversion

Individuals’ preference for a GSA or a DVA is determined not only by the av-

erage level of benefits, but also by the risk on those benefits. Hence, individuals’
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preference depends on their risk aversion levels. We expect more risk-averse indi-

viduals to prefer the DVA, as long as the default rates entailed by their respective

optimal AIRs are not too high. In this section, we consider highly risk-averse indi-

viduals with γ = 10, 15, and 20.

The optimal AIRs (Table 5) for highly risk-averse individuals and the annuity

provider’s default rates (Table 6, top panel) are comparable to those in the Baseline

Case. Yet, in contrast to that case, the CELs are positive (Table 6, middle panel).

This suggests that individuals who are highly risk-averse prefer the DVA over the

GSA, and are willing to pay a one-time loading of between 0.003% and 0.62%

for the DVA. Despite that, when the annuity provider charges a loading equal to

the CEL, equity holders attain Sharpe ratios that remain inferior to the 0.45 ratio

of investing in the reference portfolio, and non-negative Jensen’s alphas that are

economically insignificant (Table 6, bottom panel).

Table 5: Highly Risk-Averse Individuals: Optimal AIR, h∗ (%)

This table shows the optimal (AIR), Equation (5), of the DVA and GSA for indi-

viduals with risk aversion levels of γ = 10, 15, and 20. All other parameters are

identical to those in the Baseline Case.

θ γ
(%) 10 15 20

0 3.56 3.58 3.59

20 4.44 4.25 4.04
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Table 6: Highly Risk-Averse Individuals: Cumulative Default Rates (%), Certainty

Equivalent Loading (CEL) (%) and Investment Performance Statistics

This top panel displays the Cumulative Default Rates, Equation (10), of the annuity

provider. The middle panel shows the CEL, Equation (11), for individuals with risk

aversion levels of γ = 10, 15, and 20. The bottom panel shows the Sharpe ratio and

Jensen’s alpha, Equation (12), when the loading is set at the CEL estimates in the

middle panel. All other parameters are identical to those in the Baseline Case. The

99% confidence intervals are in parentheses.

Cumulative Default Rates (%)

θ γ
(%) 10 15 20

0 0.0106 0.0104 0.0104

20 0.0056 0.0064 0.0086

Certainty Equivalent Loading, CEL (%)

θ γ
(%) 10 15 20

0
0.037 0.250 0.410

[0.025, 0.049] [0.233, 0.268] [0.356, 0.458]

20
0.003 0.340 0.620

[-0.062, 0.069] [0.095, 0.577] [0.087, 1.145]

Sharpe Ratio and Jensen’s alpha: Loading = CEL

θ
Statistic

γ
(%) 10 15 20

0

SR
-0.0002 0.0083 0.0146

[-0.0039, 0.0034] [0.0046, 0.0119] [0.0110, 0.0183]

E [α ] 0 0.0003 0.0005

(%) [-0.0000, -0.0000] [0.0003, 0.0003] [0.0005, 0.0005]

20

SR
0.292 0.3062 0.3171

[0.2920, 0.2920] [0.3062, 0.3062] [0.3171, 0.3171]

E [α ] 0 0.0005 0.0009

(%) [0.0000, 0.0000] [0.0005, 0.0005] [0.0009, 0.0009]

6.2 Sensitivity to the Deferral Period

As the accuracy of longevity forecast depends on its horizon, the preference

for either contract may depend on the age when the individual annuitizes. In the

Baseline Case, individuals are aged 25 when purchasing a DVA contract or par-

ticipating in the GSA. As retirement benefit payments commence at age 66, the

deferral period is 40 years. Here, we shorten the deferral period by considering the
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situations where individuals decide between the DVA and the GSA at ages 45 and

65 instead (i.e., deferral periods of 20 years, and one year respectively).

When the deferral period is shorter, the DVA contract provider and GSA scheme

administrator are able to make a more accurate forecast of survival probabilities.

Thus, we expect smaller differences in the average level and standard deviation

of benefits between contracts. However, this does not necessarily imply that the

CEL estimates would be closer to zero, because the time-preference discounting,

as governed by the subjective discount factor, β in Equation (2), plays a larger role

when retirement is imminent. Therefore, while the difference between the benefits

would be smaller, the effect in terms of utility would be greater.

Table 7 reveals that for individuals with risk-aversion levels of γ = 5, 8, the

effect due to shorter time-discounting dominates the more accurate survival prob-

ability forecast; the CEL estimates are negative and more economically significant

than those in the Baseline Case (Table 3). Thus, despite the smaller threat that

longevity risk poses due to more accurate survival probability forecast, the immi-

nence of retirement results in an increased preference for the GSA relative to the

Baseline Case.

The least risk-averse individual, γ = 2, also has a stronger preference for the

GSA than in the Baseline Case when the deferral period is 20 years, but this obser-

vation reverses when the deferral period is only one year. For the individual with

γ = 2 who decides between the DVA and the GSA in the year prior to retirement,

the higher accuracy of survival probabilities has a more prominent effect in utility

terms than the shorter time-discounting has. This individual prefers the GSA to a

lesser extent than in the Baseline Case because the CELs are less negative than that

in the Baseline Case. Thus, apart from when the individual is less risk-averse and

purchases an immediate annuity, the Baseline Case outcome stands.
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Table 7: Deferral Period: Certainty Equivalent Loading (CEL) (%)

This top panel displays the CEL, Equation (11), for individuals aged 45 at annuiti-

zation, whereas the bottom panel corresponds to the CELs for individuals aged 65

at that time. All other parameters are identical to those in the Baseline Case. The

99% confidence intervals estimated by the Delta Method are in parentheses.

20-year Deferral

θ γ
(%) 2 5 8

0
-0.380 -0.260 -0.150

[-0.386, -0.367] [-0.271, -0.252] [-0.161, -0.142]

20
-0.370 -0.270 -0.180

[-0.391, -0.350] [-0.293, -0.244] [-0.219, -0.140]

One-year Deferral

θ γ
(%) 2 5 8

0
-0.270 -0.230 -0.190

[-0.274, -0.266] [-0.234, -0.226] [-0.198, -0.190]

20
-0.260 -0.220 -0.190

[-0.262, -0.254] [-0.222, -0.213] [-0.192, -0.182]

6.3 Sensitivity to the Stock Exposure

Both the GSA and the DVA contracts offer the AIR that maximizes individuals’

expected utility given a fixed proportion invested in the stock index, θ , which we

set to either 0% or 20%. We demonstrate that the implication of the Baseline Case,

where individuals marginally prefer the GSA, holds as long as the allocation to the

stock index corresponds to an AIR with similar default rates as those in the Base-

line Case.

We consider four alternative exposures to the stock index. The first three are

constant allocations over the planning horizon: θ1 = 40%, θ2 = 60%, θ3 =
λS

γσS
. θ3

corresponds to the individual’s optimal exposure to stocks (Appendix A). For the

least risk-averse individual (γ = 2), the optimal allocation to stocks, θ3 is 147.2%.

The moderately risk-averse individual (γ = 5) optimally invests 58.9% in the stock

index whereas the most risk-averse individual (γ = 8) optimally invests 36.8% in

stocks.

The fourth exposure that we consider, θ4 = {θ4,x}95
x=25, is an age-dependent

allocation that begins with around 90% allocation to stocks at age 25, which grad-

ually diminishes to a minimum of about 30% post-retirement, until the maximum
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age (Figure 5, top panel).22 A decreasing exposure to stocks as the individual grows

older is consistent with popular financial advice (Viceira, 2001). In theory, when

the investment opportunity set is constant, horizon-dependent investment strategies

are optimal in situations where, for instance, the individual receives labor income

(Viceira, 2001; Cocco et al., 2005), or where the individual’s risk aversion param-

eter is time dependent (Steffensen, 2011). For all θs, the optimal AIR is set ac-

cording to Equation (5), and summarized in Table 8. For the age-dependent θ4, the

optimal AIR also varies over the individual’s life-span (Figure 5, bottom panel).

Figure 5: Glidepath Allocation to Stocks, θ4 and the Optimal AIR (%)

The top panel shows the age-dependent allocation to stocks, defined on the industry

average of Target-Date Funds in the U.S. in 2014 (Yang et al., 2016). The bottom

panel displays the corresponding age-dependent optimal AIR, Equation (5), when

the allocation to the stock index is θ4.
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For all θi, i = 1, 2, 3, 4, the optimal AIRs that correspond to these levels of

22This glidepath allocation is based on the 2014 Target-Date Fund industry average (Yang et al.,

2016).
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stock investments (Table 8) are slightly higher than those in the Baseline Case

(Table 1), where θ = 20%. Due to the inverse relationship between the default

rate and the AIR, the default rates are smaller than those in the Baseline Case. The

CEL estimates in Table 8 imply that when investing according to θi, i = 1, 2, 3, 4,

individuals marginally prefer the GSA, to a similar extent as they do in the Baseline

Case. Therefore, the stock allocations that we consider preserve the individual

preference for the GSA as in the Baseline Case.
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Table 8: Exposure to Stock Index: Certainty Equivalent Loading (CEL) (%)

The table displays the the optimal AIR (h∗ (θi)), Equation (5), the Cumulative De-

fault Rates, Equation (10), and the CEL, Equation (11), when the underlying port-

folio is θi invested in the stock index and 100− θi invested in the money market

account, for i = 1, 2, 3, 4. Estimates are calculated on 5 million replications. All

other parameters are identical to those in the Baseline Case. The 99% confidence

intervals estimated by the Delta Method are in parentheses.

θ1 = 40%

Statistics γ
(%) 2 5 8

h∗ (θ1) 4.59 5.06 4.72

Default Rates 0.0034 0.0020 0.0030

CEL
-0.340 -0.211 -0.080

[-0.344, -0.336] [-0.227, -0.195] [-0.218, 0.058]

θ2 = 60%

Statistics γ
(%) 2 5 8

h∗ (θ2) 5.08 5.24 4.26

Default Rates 0.0025 0.0021 0.0039

CEL
-0.344 -0.189 0.104

[-0.348, -0.340] [-0.222, -0.155] [-0.032, 0.240]

θ3 =
λS

γσS
, optimal exposure

Statistics γ
(%) 2 5 8

θ3 147.2 58.9 36.8

h∗ (θ3) 0.0060 0.0052 0.0047

Default Rates 0.0003 0.0019 0.0026

CEL
-0.332 -0.186 -0.031

[-0.342, -0.321] [-0.235, -0.137] [-0.106, 0.043]

θ4 = glidepath

Statistics γ
(%) 2 5 8

θ4 Figure 5, top panel

h∗ (θ4) Figure 5, bottom panel

Default Rates 0.0052 0.0020 0.0022

CEL
-0.341 -0.307 -0.563

[-0.345, -0.336] [-0.390, -0.224] [-0.773, -0.352]
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6.4 Sensitivity to the Level of Equity Capital

Individuals’ preference for the DVA depends on the provider’s default rates, de-

termined by the level of the provider’s capital buffer. We investigate the implication

that the DVA provider’s default rates has on individual preference by increasing the

Baseline Case’s leverage ratio by one standard deviation, comparable to halving the

Baseline Case equity capital to 5%.23

When the equity capital is 5% of the value of liabilities instead of 10%, the

default rates rise from 0.004-0.01% to 4.96-6.78% (Tables 2 and 9). The CELs that

accompany these high rates are economically significantly negative. For example,

when θ = 20%, the most risk averse individual (γ = 8) is essentially indifferent

between the DVA and GSA in the Baseline Case, but now values the DVA at only

three-fourths of its best estimate price (Table 9, CEL =−24%).

While the CELs in the Baseline Case are similar for θ = 0 and θ = 20%, they

are noticeably more negative for θ = 20% when the annuity provider has higher

leverage. The amplified preference for the GSA in the presence of stock market risk

is due to the resolution when a default occurs. When the annuity provider defaults,

individuals recover the provider’s residual wealth to purchase an equally weighted

portfolio of bonds that mature in every remaining year of retirement until maxi-

mum age. This implies that individuals forgo mortality credit. In the case when

θ = 20%, individuals additionally relinquish all potential reward from investing in

the stock market. Relative to having the underlying portfolio fully invested in the

money market account, when only mortality credit is lost, the consequence of de-

fault is more severe when the underlying portfolio is invested in the stock market.

Therefore, in Table 9, the CELs when θ = 20% are considerably more negative

than those when θ = 0.

23The standard deviation of U.S. life insurers’ leverage ratio between 1998-2011 is 3.7%

whereas the average is around 90% (based on A.M. Best data from Koijen and Yogo, 2015). Us-

ing the definition of Leverage Ratio := 1 −Value of Equity/Value of Assets, the assumption that

Value of Assets = Premium Collected+Value of Equity, and that the Premium Collected is normal-

ized to 1, a 93.7% leverage ratio is equivalent to an initial capital of around 5%.
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Table 9: Higher Leverage: Default Rates (%) and Certainty Equivalent Loading

(CEL) (%)

This top panel displays the Cumulative Default Rates, Equation (10), of the annuity

provider, whereas the bottom panel shows the CEL, Equation (11), when the level

of equity capital is 5% of the present value of liabilities at the date of contract

sale. All other parameters are identical to those in the Baseline Case. The 99%

confidence intervals for the CEL are in parentheses.

Cumulative Default Rates (%)

θ γ
(%) 2 5 8

0 6.7826 6.4874 6.4092

20 5.6558 4.9730 4.9634

Certainty Equivalent Loading, CEL (%)

θ γ
(%) 2 5 8

0
-3.4 -5.5 -9.4

[-3.5, -3.4] [-5.6, -5.5] [-9.5, -9.3]

20
-5.6 -12.9 -24.0

[-5.7, -5.5] [-13.2, -12.7] [-24.3, -23.6]

When the annuity provider is more leveraged, the increased occurrence of de-

faults adversely affects the equity holders’ excess return and its standard devia-

tion, and makes exposure to longevity risk even less attractive for both θ = 0 and

θ = 20%. When θ = 0, excess returns on the equity holders’ investment is nega-

tive (Table 10, top panel). When the underlying portfolio is θ = 20% invested in

the stock market, higher leverage yields an excess return of 1.3%, lower than the

1.44% excess return of the Baseline Case (Tables 10 and 4, bottom panels). Due to

the higher frequency of defaults, the standard deviation of excess return is around

twice that of the Baseline Case (7.6% vs. 3.9% for θ = 0; 9% vs. 5% for θ = 20%;

Tables 4 and 10). As a result, the Sharpe ratio is halved whereas the Jensen’s alphas

are more negative than those in the Baseline Case.
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Table 10: Higher Leverage: Equity Holders’ Investment Performance Statistics

This table displays the equity holders’ mean annualized return in excess of the risk-

free rate of return (E
[
R(Aexs)

]
, %), standard deviation of annualized excess return

(σ (Aexs) , %), the Sharpe ratio (SR) and Jensen’s alpha (E [α ], %), Equation (12),

of capital provision to the DVA provider, when the level of equity capital is 5% of

the present value of liabilities at the date of contract sale. The underlying portfolio

is either invested in the money market account only (θ = 0, top panel), or is 20%

invested in the risky stock index, and 80% in the money market account (θ = 20%,

bottom panel). The 99% confidence intervals are in parentheses.

θ = 0

Statistic
γ

2 5 8

R(Aexs) -0.085 -0.085 -0.085

(%) [-0.089, -0.082] [-0.088, -0.082] [-0.088, -0.082]

σ (Aexs) 7.59 7.56 7.55

(%) [7.57, 7.61] [7.54, 7.58] [7.53, 7.57]

SR
-0.011 -0.011 -0.011

[-0.015, -0.008] [-0.015, -0.008] [-0.0145, -0.008]

E [α ] -0.0009 -0.0009 -0.0009

(%) [-0.0009, -0.0009] [-0.0009, -0.0009] [-0.0009, -0.0009]

θ = 20%

Statistic
γ

2 5 8

R(Aexs) 1.28 1.29 1.29

(%) [1.28, 1.28] [1.29, 1.30] [1.29, 1.30]

σ (Aexs) 9.45 9.22 9.22

(%) [9.42, 9.47] [9.20, 9.25] [9.19, 9.24]

SR
0.136 0.1401 0.140

[0.132, 0.139] [0.137, 0.143] [0.137, 0.143]

E [α ] -0.0009 -0.0009 -0.0009

(%) [-0.0009, -0.0009] [-0.0009, -0.0009] [-0.0009, -0.0009]

6.5 Sensitivity to Longevity Risk

We investigate the effect of longevity risk on individual preference between

the GSA and DVA via three other scenarios: we introduce parameter uncertainty

surrounding the drift of the longevity time trend, and we adopt the Cairns et al.

(2006) longevity model instead of the Lee and Carter (1992) model.
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6.5.1 Drift Parameter Uncertainty of the Longevity Time Trend

One way to depict the challenge of accurately estimating future survival prob-

abilities is to introduce parameter uncertainty on the estimate of the drift term, ĉ,

in the Lee and Carter (1992) model, Equation (8).

The maximum likelihood estimate for the drift term of the longevity model is

Normally distributed, ĉ∼N
(
c, σ 2

c

)
. Based on the sample used for the model cali-

bration, we obtain ĉ= −1.0689 and σ̂c=0.0521. Without parameter uncertainty, the

best m-year-ahead forecast at time t is k̂t+m =mĉ+kt . To incorporate parameter un-

certainty, we draw cl from the distribution N

(
ĉ, σ̂ 2

c

)
for the lth simulation repli-

cation. The time trend governing longevity is thus kt+m, l = mcl + kt, l +∑m
i=1 εδ , l ,

εδ , l ∼ N

(
0, σ̂ 2

δ

)
, while the best m-year-ahead forecast relies on ĉ as cl is unob-

served, i.e., k̂t+m, l = mĉ+ kt, l .

To intuitively gauge the implication of parameter uncertainty, we plot the mean,

5th and 95th percentiles of the GSA funding ratio prior to entitlement adjustments,

with and without uncertainty over time (Figure 6). The GSA funding ratio reflects

the entitlement adjustments. For instance, if the funding ratio is 1.02, then the GSA

offers a benefit that is 2% higher than the entitlement in that year. Figure 6 suggests

that parameter uncertainty has a faint effect on the benefits. The average entitle-

ment adjustments are comparable to when the drift term is known with certainty.

The only noticeable difference is that with parameter uncertainty, the 5th and 95th

percentiles are slightly farther apart in the final years of retirement.

34



Figure 6: Drift Parameter Uncertainty: GSA Funding Ratio

This figure presents the mean, 5th and 95th percentiles of the funding ratio of a

GSA prior to entitlement adjustments, for when longevity is modeled according to

Lee and Carter (1992). When there is no parameter uncertainty surrounding the

drift term of the longevity time trend, c = ĉ. When there is parameter uncertainty,

c ∼ N

(
ĉ, σ̂ 2

c

)
. The GSA is composed of individuals with a risk-aversion level of

γ = 5 and the underlying portfolio is fully invested in the money market account.

All other parameters are identical to those in the Baseline Case.
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When there is uncertainty around the drift parameter, the DVA is disadvantaged

by a higher default probability. However, the GSA’s appeal also diminishes as enti-

tlement adjustments have a wider variation, relative to adjustments in the Baseline

Case toward the end of retirement (Figure 6). Neither of these drawbacks is suffi-

ciently decisive to sway individual preferences. Therefore, the CELs deviate only

marginally from those in the Baseline Case (Table 11).
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Table 11: Drift Parameter Uncertainty: Cumulative Default Rates (%) and Cer-

tainty Equivalent Loading (CEL) (%)

The top panel presents the Cumulative Default Rates, Equation (10), of the an-

nuity provider when there is parameter uncertainty surrounding the drift term of

the longevity model’s time trend. The bottom panel displays the CEL, Equation

(11). All other parameters are identical to those in the Baseline Case. The 99%

confidence intervals estimated by the Delta Method are in parentheses.

Cumulative Default Rates (%)

θ γ
(%) 2 5 8

0 0.0174 0.0144 0.0140

20 0.0066 0.0030 0.0030

Certainty Equivalent Loading, CEL (%)

θ γ
(%) 2 5 8

0
-0.351 -0.193 -0.045

[-0.362, -0.339] [-0.205, -0.182] [-0.056, -0.033]

20
-0.345 -0.194 -0.046

[-0.356, -0.333] [-0.210, -0.178] [-0.089, -0.004]

6.5.2 Standard Deviation of the Longevity Time Trend Errors

We consider another prospect of longevity evolution with a variance of the

longevity time trend that is twice the variance estimated from historical mortal-

ity data, i.e., σδ of Equation (8) is replaced by
√

2σδ = 3.562. At a higher time

trend standard deviation, the survival probabilities not only become more variable,

but their conditional probabilities also decline (Denuit, 2009). Higher variability

of survival outcomes is unfavorable both to the GSA participants, who bear larger

variations in benefits, and to the DVA contract holders, due to the greater probabil-

ity of default. On average, the entitlement adjustments under increased longevity

risk are positive and higher than those in the Baseline Case, but there is also a wider

variation in entitlement adjustments that rises in age (Figure 7).
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Figure 7: GSA Funding Ratio

This figure presents the mean, 5th and 95th percentiles of the funding ratio of a

GSA prior to entitlement adjustments, for when longevity is modeled according to

Lee and Carter (1992). Parameters for the longevity model are either those in Fig-

ure 1 (denoted by σ 2
δ ), or with the variance of the time trend error terms doubled

(denoted by 2σ 2
δ ). Individuals have a risk-aversion level of γ = 5 and the underly-

ing portfolio is fully invested in the money market account. All other parameters

are identical to those in the Baseline Case.
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The default rates are considerably higher when the longevity time trend vari-

ance is doubled (i.e., 3.39-5.17%, Table 12). Consequently, individuals prefer the

GSA to a large degree (Table 13, top panel).

Table 12: Doubled Longevity Time Trend Variance: Cumulative Default Rates (%)

This table displays the Cumulative Default Rates, Equation (10), of the annuity

provider when the variance to the longevity model time trend is doubled. All other

parameters are identical to those in the Baseline Case.

θ γ
(%) 2 5 8

0 5.1650 4.8704 4.8008

20 4.0596 3.4066 3.3928

Two factors govern individual preference. The first is the effect on the level and

standard deviation of benefits; the second is the annuity provider’s higher default

risk due to less accurate longevity forecasts. To separately identify the two effects,

we eliminate default risk by assuming a sufficiently high level of equity capital.
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In the absence of default, the least risk-averse individual (i.e., γ = 2) marginally

prefers the GSA, to a similar extent as she did in the Baseline Case (Table 13, mid-

dle panel). Thus, the least risk-averse individual’s preference is invariant to the size

of the standard deviation of the error terms, as long as the provider’s default risk is

unaffected. As for the more risk-averse individuals (i.e., γ = 5, 8), they prefer the

DVA with no default risk and are willing to offer between 0.2% and 3.2% in loading

for it. Thus, although a higher standard deviation to the longevity time trend errors

transpires to a more volatile GSA benefit payment, making the GSA less appealing

to individuals overall. Individuals who are at least moderately risk-averse would

prefer the DVA only if the annuity provider’s default risk were eliminated.

Despite the seemingly high loading that the annuity provider could charge on

a DVA contract with no default risk, the loading is insufficient to yield equity hold-

ers a Sharpe ratio superior to the 0.45 ratio of investment without longevity risk

exposure (Table 13, bottom panel). The Jensen’s alpha is positive but economi-

cally insignificant. Therefore, longevity risk exposure does not improve the equity

holders’ risk-return tradeoff.
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Table 13: Doubled Longevity Time Trend Variance: Certainty Equivalent Loading

(CEL) (%) and Investment Performance Statistics

The top panel presents the CEL, Equation (11), when the variance of the errors of

the longevity time trend is doubled, and the equity capital is 10% of the value of

liabilities on the contract’s date of sale. The middle panel displays the CEL in the

same setting as in the top panel, but with the equity capital raised sufficiently to

eliminate default risk. The bottom panel shows the Sharpe ratio (SR) and Jensen’s

alpha (α), Equation (12), when the loading is set at the CEL estimates in the middle

panel. All other parameters are identical to those in the Baseline Case. The 99%

confidence intervals are in parentheses.

CEL (%): With Default Risk

θ γ
(%) 2 5 8

0
-2.5 -3.2 -5.0

[-2.5, -2.5] [-3.2, -3.1] [-5.1, -4.9]

20
-3.9 -7.7 -15.9

[-3.9, -3.8] [-7.8, -7.5] [-16.4, -15.5]

CEL (%): No Default Risk

θ γ
(%) 2 5 8

0
-0.4 0.2 0.7

[-0.4, -0.4] [0.1, 0.2] [0.7, 0.7]

20
-0.3 3.2 3.2

[-0.4, -0.3] [2.1, 4.2] [3.1, 3.4]

Sharpe Ratio and Jensen’s Alpha: No Default Risk, Loading = CEL

θ
Statistic

γ
(%) 2 5 8

0

SR
0.0046 0.0164 0.0263

[0.0009, 0.0082] [0.0127, 0.0200] [0.0226, 0.0299]

E [α ] 0 0.0001 0.0002

(%) [0.0000, 0.0000] [0.0001, 0.0001] [0.0002, 0.0002]

20

SR
0.4243 0.4397 0.4397

[0.4243, 0.4243] [0.4397, 0.4397] [0.4397, 0.4397]

E [α ] 0.0001 0.0005 0.0005

(%) [0.0001, 0.0001] [0.0005, 0.0005] [0.0005, 0.0005]

39



6.5.3 Alternate Longevity Model

We next explore the choice of the longevity model by swapping the Lee and Carter

(1992) model for the Cairns et al. (2006) model, which produces a wider range of

survival probabilities at old age. We calibrate the Cairns et al. (2006) model over

the same sample of mortality data as that described in Section 3.2. Figure 8 presents

the fan plot of the simulated fraction of living individuals under the Cairns et al.

(2006) model. The maximum range of the fraction of 25-year-olds still alive at

older ages is 45% (i.e., at age 91), 50% more than the maximum range under the

Lee and Carter (1992) model (i.e., 30% interval at age 88; Figure 2). This wider

range translates into greater variability in benefits for the GSA, and higher default

rates for the DVA provider.

Figure 8: Cairns et al. (2006) Fan Plot

This figure presents the fan plot of the simulated fraction of living individuals (i.e.,

the population of 25-year-olds is normalized to one) over 10,000 replications when

longevity is modeled according to the Cairns et al. (2006) model, which is cal-

ibrated on U.S. female death counts from 1980 to 2013 taken from the Human

Mortality Database. Darker areas indicate higher probability mass.
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With either the Lee and Carter (1992) or the Cairns et al. (2006) model, the

rise in GSA benefits with age is accompanied by more uncertainty surrounding the

benefits. However, the Cairns et al. (2006) model produces greater uncertainty as

the individual ages, as seen by comparing the top panels in Figures 3 and 9. This

generates greater individual preference for the DVA under the Cairns et al. (2006)

model.
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Figure 9: Box Plots of GSA and DVA Benefits: Cairns et al. (2006) Model

The figure presents the box plots of benefits for the GSA (top panel) and the DVA

(bottom panel), accruing to an individual with a risk aversion level of γ = 5, at ages

66, 80 and 95. The underlying portfolio is invested in the money market account

only. The line in the middle of the box is the median, while the edges of the box

represent the 25th and 75th percentiles. The height of the box is the interquartile

range, i.e., the interval between the 25th and 75th percentiles. The “+” symbols

represent data points 1.5 times larger than the interquartile range.
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For a fixed level of equity capital, the Cairns et al. (2006) model yields higher

default rates because of the heightened uncertainty surrounding old age survival.

If we maintain the Baseline Case’s 90% leverage ratio, the default rates under the

Cairns et al. (2006) model are between 0.48% to 2.21% (Table 14), substantially
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higher than the at-most 0.01% default rates when the Lee and Carter (1992) model

is adopted (Table 2). Consequent to more defaults, individuals have a lower prefer-

ence for the DVA (Table 14, bottom panel), as the CEL estimates are more negative

than those in the Baseline Case (Table 3). Therefore, individuals prefer the DVA

contract under the Cairns et al. (2006) model only if the associated default risk is

curtailed. Regardless of whether equity holders provide enough capital to elim-

inate default risk, the Sharpe ratio of equity provision is lower than the ratio of

abstaining from longevity risk exposure. The Jensen’s alpha of equity provision is

positive but economically insignificant.

Table 14: Cairns et al. (2006) Mortality Model with Default: Cumulative Default

Rates (%) and CEL (%)

The top panel presents the Cumulative Default Rates, Equation (10), whereas the

bottom panel displays the CEL, Equation (11), when life expectancy follows the

Cairns et al. (2006) model, calibrated to the same sample as the Lee and Carter

(1992) model. All other parameters are identical to those in the Baseline Case.

The 99% confidence intervals estimated by the Delta Method are in parentheses.

Cumulative Default Rates (%)

θ γ
(%) 2 5 8

0 2.2120 1.8082 1.7120

20 0.9676 0.4808 0.4756

CEL (%)

θ γ
(%) 2 5 8

0
-0.950 -0.660 -0.975

[-0.970, -0.930] [-0.690, -0.630] [-1.025, -0.924]

20
-0.877 -0.503 -1.515

[-0.906, -0.847] [-0.571, -0.436] [-1.763, -1.268]

Additionally, the choice of the longevity model underlies the inference of Maurer et al.

(2013). While we find that individuals marginally prefer the GSA, Maurer et al.

(2013) observe the opposite – the CEL for the contract indexed to longevity is pos-

itive (Table 7 of Maurer et al., 2013). When we assume that no default occurs, as

do Maurer et al. (2013), we are able to reconcile our results to theirs (i.e., individ-

uals who are moderately risk-averse to risk-averse, γ = 5 and 8, prefer the DVA;

Table 15, top panel). The most risk-averse individual is willing to pay as much

as 1% in loading to shed longevity risk. Despite that, when the annuity provider

sets the loading to be equal to the CEL, the accompanying Sharpe ratio remains

inferior to the Sharpe ratio of investing in only the financial market, i.e., 0.45 when

θ = 20%, whereas the Jensen’s alpha is positive but economically insignificant
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(Table 15, bottom panel). Therefore, while individual preference is sensitive to

the choice of the longevity model, the extent that individuals are willing to pay to

insure against longevity risk is insufficient to entice equity holders to be exposed

to longevity risk.

Table 15: Cairns et al. (2006) Mortality Model with No Default: Certainty Equiv-

alent Loading (CEL) (%) and Investment Performance Statistics

The top panel presents the CEL, Equation (11), when life expectancy follows the

Cairns et al. (2006) model is calibrated to the same sample as the Lee and Carter

(1992) model. The bottom panel shows the Sharpe ratio (SR) and Jensen’s alpha

(α), Equation (12), when the loading is set at the CEL estimates in the top panel.

Equity capital is sufficiently high such that no default occurs. All other parameters

are identical to those in the Baseline Case. The 99% confidence intervals are in

parentheses.

CEL (%)

θ γ
(%) 2 5 8

0
-0.089 0.528 1.019

[-0.099, -0.079] [0.519, 0.537] [1.011, 1.028]

20
-0.092 0.461 0.874

[-0.101, -0.082] [0.448, 0.475] [0.835, 0.913]

Sharpe Ratio and Jensen’s Alpha: No Default Risk, Loading = CEL

θ
Statistic

γ
(%) 2 5 8

0

SR
0.0206 0.0481 0.0701

[0.0170, 0.0242] [0.0444, 0.0517] [0.0665, 0.0738]

E [α ] 0.0001 0.0002 0.0002

(%) [0.0001, 0.0001] [0.0002, 0.0002] [0.0002, 0.0002]

20

SR
0.4337 0.4362 0.4379

[0.4337, 0.4337] [0.4362, 0.4362] [0.4379, 0.4379]

E [α ] 0.0001 0.0001 0.0002

(%) [0.0001, 0.0001] [0.0001, 0.0001] [0.0002, 0.0002]

7 Conclusion

We investigate longevity risk management in retirement planning in the pres-

ence of two alternatives: individuals participating in a collective scheme that ad-

justs retirement income according to longevity evolution, or purchasing a variable

annuity contract offered by an equity-holder-backed annuity provider. Our model

43



features the perspective of not only the individuals, who evaluate their welfare in

retirement, but also the equity holders, who weigh their risk-return tradeoff from

longevity risk exposure.

Due to the entitlement adjustments arising from errors in survival probabil-

ity forecasts, the collective scheme provides more volatile benefits than those of

an annuity contract. However, the collective scheme also offers a slightly higher

level of benefits on average because, for errors of the same magnitude, over- and

under-estimating the log central death rates has asymmetric effects on the benefits.

The annuity contract provider relies on limited equity capital to subsume forecast-

ing errors, and so is subject to default risk. Although the annuity contract shields

individuals from downward entitlement adjustments up to a limit, it deprives indi-

viduals of any upward adjustments, as these gains belong to the equity holders.

We find that individuals marginally prefer the collective scheme over the an-

nuity contract priced at its best estimate. This implies that the annuity provider is

unable to charge a positive loading on the contract, subsequently failing to compen-

sate its equity holders for bearing longevity risk. Therefore, when individuals have

the choice to form a collective scheme, the annuity provider without any advantage

bearing longevity risk and has to fully hedge financial market risk would not exist

in equilibrium. Our finding is robust to numerous individual characteristics, stock

market risk exposure, and heightened uncertainty surrounding life expectancy.

Our results advocate for collective mechanisms in pension provision. The

pressing issue of population aging, and the gradual maturation of the longevity risk

derivatives market, may spur reform, e.g., the U.S. Chamber of Commerce (2016)

recommends new plan designs to enhance the private retirement system. Collec-

tive schemes may serve as a benchmark that the annuity contract has to match or

surpass with respect to the individuals’ expected utility.

One limitation of our work is the exclusion of channels that may reduce the in-

surer’s effective longevity exposure, such as synergies in product offering (e.g., nat-

ural hedging of longevity risk via the sale of annuities and life insurance contracts;

Wong et al., 2017), access to reinsurance (Baione et al., 2016) and shadow insur-

ance (Koijen and Yogo, 2016). There are also alternative resolution mechanisms

in the case of default, and other factors that may influence annuitization decisions,

such as bequest motives, medical expenses, social security, uninsurable income,

etc. (Lockwood, 2012; Pashchenko, 2013; Peijnenburg et al., 2017; Ai et al., 2016;

Yogo, 2016). Examining these features in future research could generate more in-

sights into the management of longevity risk in retirement planning.
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Appendices

A Rationale of the Contract Definition

The DVA and GSA contracts are not only modeled along the variable annuity

contracts studied in the literature (Koijen et al., 2011; Maurer et al., 2013), but are

also relatable to an individual’s optimal consumption and investment.

The problem of optimal consumption and investment is composed of two sepa-

rate parts: the allocation of initial wealth over each retirement year, and the invest-

ment strategy. Aase (2015) shows that for an expected-CRRA-utility-maximizing

individual facing mortality and stock market risks, the optimal allocation of initial

wealth decays geometrically in the retirement horizon. The AIR in our setting rep-

resents precisely this rate of decay.

When individuals are subject to longevity risk, its existence would not change

the optimal wealth and asset allocation; what would complicate the solution is the

ability to react to longevity evolution (Huang et al., 2012). We, however, assume

that the contract’s parameters are deterministic (i.e., fixed in the year when it is

sold, and the incorporation of new information thereafter is prohibited). Therefore,

by an appropriate choice of the AIR, h∗, the contract described by Equations (3)

and (4) coincides with the optimal decumulation path of the individual.

We next solve the utility maximization problem, (13), to obtain the optimal

AIR and investment strategy for a contract defined by Equations (3) and (4).

At time t0, the individual purchases the maximum number of variable annu-

ity contracts affordable with a lump sum capital normalized to one. The annuity

contract commences benefit payment in year tR, until the year T , conditional on

the individual’s survival. In the financial market setting as described in Section

2.1, with a deterministic fraction of wealth θ = {θt}T
t=t0

invested in the risky stock

index, and 1−θ invested in the money market account, the value of the reference

portfolio evolves according to dWt

Wt
= (r+θtλσS) dt +θtσS dZS,t .
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max

{θt , h(t,θt)}T
t=tR

Et0 [U (Ξ)] (13)

= Et0

[
ˆ T

tR

e−βt Ξ1−γ
t

1− γ

(
Πt

s=t0 1 p
(s)
x+(s−t0)

)
dt

]

Ξt =

{
1

A(h) e−h(t,θt)×(t−tR) Wt

Wt0

0

if alive in year t

otherwise
(14)

A(h) =

ˆ T

tR

e−h(t,θt )×(t−tR)Et0

[(
Πt

s=t0 1 p
(s)
x+(s−t0)

)]
dt (15)

h(t,θt) = Assumed Interest Rate

β = subjective discount factor

γ = risk aversion parameter

Wt = value of the reference portfolio with

the investment policy θ

Et0

[
Πt

s=t0 1 p
(s)
x+(s−t0)

]
= t−t0

p
(t0)
x

A(h) is the cost per unit of a zero-loading contract. It is straightforward to verify

that the contract has a present expected value of one for any h∈RT−tR , and thus sat-

isfies the budget constraint. Given any θ , the first order condition, Et0 [U (Ξ)]/∂h=
0 yields the optimal AIR, Equation (16).

h∗ (t,θt) = r+
β − r

γ
−

1− γ

γ
θtσS

(
λS −

γθtσS

2

)
(16)

r = constant short rate

β = subjective discount factor

γ = risk aversion parameter

θt = fraction of wealth allocated to the stock index

at time t, tR ≤ t ≤ T

σS = standard deviation governing the stock index’s dynamics

λS = instantaneous Sharpe ratio of the stock index

Equation (16) is composed of the risk-free rate, the difference between the

subjective discount factor and the risk-free rate, adjusted by the risk aversion pa-

rameter, and a term concerning the exposure to the stock index, weighted by the

risk aversion level.

If the returns on the investment were constant at r (e.g., either θ = 0 or σS = 0),

for any given level of the elasticity of inter-temporal substitution, γ , the shape of the
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optimal consumption path depends on the relative magnitude of β and r. An indi-

vidual who discounts future consumption at a higher rate than the constant interest

rate (i.e., β > r, an impatient individual) prefers a downward sloping consump-

tion path whereas a more patient person (i.e., β < r) optimally chooses an upward

sloping path. When θ ̸= 0 and σS ̸= 0, then the risk aversion level, the standard

deviation and the market price of stocks also have a role in determining the optimal

consumption path.

The first-order condition corresponding to the allocation to the stock index,

Et0 [U (Ξ)]/∂θ = 0, implies the optimal allocation to the risky asset:

θ∗ =
λS

γσS
(17)

The optimal allocation to the stock index, θ∗, is independent of time and

wealth, and is identical to the optimal investment policy of Merton (1969).

The variable annuity contract provides the optimal decumulation path when

the AIR is set to h∗ (t,θ∗
t ). By prohibiting the incorporation of new information

into the contract definition after its date of sale (i.e., enforcing deterministic, but

possibly time-varying contract parameters), longevity risk does not influence the

optimal AIR and the optimal portfolio choice.

The conception of the GSA as a collective justifies the assumption that it priori-

tizes individual welfare (i.e., maximizes individuals’ expected utility in retirement).

Therefore, the GSA offers an AIR that is in the best interest of the individuals, with-

out conflict among its stakeholders. As for the annuity provider, such contracts are

also conceivable. For instance, Froot (2007) suggests that insurers should shed

all liquid risks for which they have no comparative advantage to outperform (e.g.,

financial market risk), and devote their entire risk budget to insurance risks (e.g.,

longevity risk). The selling of variable annuities without any financial guarantee

achieves precisely this goal. Besides, Gatzert et al. (2012) demonstrate that if an

insurance company sets contract parameters for a participating life insurance con-

tract such that they maximize the contract’s value (e.g., expected utility) to the

individual, the individual may be more willing to pay more for the contract. There-

fore, the provision of contracts defined according to Equations (3) and (4) under

either a cooperative setup or by a for-profit entity is plausible.

B Definition of the Book Value of Liabilities

Suppose that the DVA provider or the GSA administrator issues contract(s) to

a cohort who is aged x at time t0, promising entitlements of ΞK(h∗, F, t, x), K ∈
{DVA, GSA}, in every year t, tR ≤ t ≤ T , conditional on the individual’s survival.

The estimate of the entity’s book value of liabilities at time t, t0 ≤ t ≤ T , is:
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Lt := ΞK(h∗, F, t, x)

ˆ T

s=max{tR ,t}
exp(−h∗ (s, θ)× (s− t))× . . .

s−t p
(t)
x+t−t0

ds (18)

s−t p
(t)
x+t−t0

= conditional probability in year t that a living individual of age x+ t

lives for at least s− t more years

h∗ (t, θ) = Optimal AIR, Equation (5)

ΞK(h∗, F, t, x) = benefit at time t for contract K ∈ {GSA, DVA}

=

{
Equation (6)

Equation (7)

if K = DVA

if K = GSA

B.1 Illustration of the Case with No Risk

To motivate the definition of Equation (18), let us consider a three-period case

(t = t0, t1, t2) in the absence of stock market and longevity risks. Assume that the

individual buys exactly one unit of the retirement contract at retirement in year t0,

lives with certainty to collect the benefits in year t1 = t0+1, and dies with certainty

before the year t2 = t1 +1. Suppose that the reference portfolio is fully invested in

the money market account, earning an interest rate that is constant at 2%. Further-

more, we adopt a constant AIR, h = 3%, and zero contract loading, F = 0. As there

is no uncertainty in this example, Equation (18) should yield precisely the value of

liabilities at time t.

By definition of the DVA contract, there are two payments to be made: one in

the year t0 and another in the year t1. The payment in t0 is:

Ξ(h, 0, t0, x) = 1×
W

Re f
t0

W
Re f

t0

e−h×(t0−t0)

= 1

The second payment, in present value at time t1 is:

Ξ(h, 0, t1, x) = 1×
W

Re f
t1

W
Re f

t0

e−h×(t1−t0)

=
W

Re f
t0 × e0.02

W
Re f

t0

e−h

= e−h+0.02

= e−0.01 (19)
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Discounting Equation (19) by the constant interest rate, we obtain the present

value at time t0, of the payment due at time t1:

PVt0 [Ξ(h, 0, t1, x)] = Ξ(h, 0, t1, x)× e−0.02×(t1−t0)

= e−0.01−0.02

= e−0.03

The present value of liabilities at time t0 is

Ξ(h, 0, t0, x)+PVt0 [Ξ(h, 0, t1, x)] = 1+ e−0.03 (20)

It remains to show that Equation (18) yields Equation (20):

Lt = Ξ(h, 0, t1, x)×
(

e−h×0
0 p

(t)
t + e−h×1

1 p
(t)
t

)

= 1×
(

1+ e−h
)

= 1+ e−0.03

B.2 Illustration of the General Case

We price the liabilities of the pension provision entity by constructing a repli-

cating portfolio for its contractual obligation. We demonstrate that the price of the

portfolio that replicates all the cash flows of an annuity contract is Equation (18).

In the setting with longevity but no mortality risk, we consider the liability as-

sociated with a contract holder who purchased 1
A unit(s) of contracts when aged

x in the year t0 = 0, retired in the year t = tR, while being subject to unknown

survival probabilities throughout the horizon, until the maximum age in the year

t = T , when death is certain.

The pension provision entity is contractually obliged to make annual benefit

payments from the individual’s retirement in the year t = tR until he or she attains

maximum age in the year t = T , conditional on her survival. Let W
Re f

t be the price

at time t of the reference portfolio to which the benefits are indexed, t ∈ [t0, T ].

Absent longevity risk, by purchasing the sum of all the units of the reference

portfolio in Column (2) of Table 16 at time t, the annuity provider would be able to

fulfill its contractual obligation with certainty. For instance, to meet the payment at

time tR, the annuity provider purchases 1
A

1

W
Re f
t0

e−h×0
tR−t p

(t0)
x units of the reference

portfolio at time t0. When longevity risk is absent, the conditional expectation,

made at time t0, of the individual’s survival in year tR coincides with the realized

survival probability, i.e., tR−t p
(t0)
x = tR−t px. The value of this portfolio will evolve
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Table 16: Future Cash Flow and the Best Replicating Portfolio of the Pension Provision Entity

This table presents the entitlements due in each year of retirement until maximum age, in future value of the year when the entitlements

are due (column (1)), and the corresponding Best Replicating Portfolio in terms of units of the reference portfolio (column (2)). The

Best Replicating Portfolio is obtained by taking the conditional expectation of the benefits in future value.

Time
Benefits in Future Value

Best Replicating Portfolio (constructed at time t)

Units of the Reference Portfolio to purchase at time t

(1) (2)

tR
1
A

W
Re f
tR

W
Re f
t0

e−h(tR−tR)×ΠtR−1
l=t0 1 px+l−t0

1
A

1

W
Re f
t0

e−h(tR−tR)
tR−t p

(t)
x+t−t0

tR +1 1
A

W
Re f
tR+1

W
Re f
t0

e−h(tR+1−tR)×ΠtR
l=t0 1 px+l−t0

1
A

1

W
Re f

t0

e−h(tR+1−tR)
tR+1−t p

(t)
x+t−t0

tR +2 1
A

W
Re f

tR+2

W
Re f
t0

e−h(tR+2−tR)×ΠtR+1
l=t0 1 px+l−t0

1
A

1

W
Re f

t0

e−h(tR+2−tR)
tR+2−t p

(t)
x+t−t0

...
...

...

T 1
A

W
Re f
T

W
Re f
t0

e−h×(T−tR)×ΠT−1
l=t0 1 px+l−t0

1
A

1

W
Re f
t0

e−h(T−tR)
T−t p

(t)
x+t−t0

5
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along with the financial market, to be worth exactly 1
A

W
Re f
tR

W
Re f
t0

×ΠtR−1
l=t0 l−t0

p
(l)
x+l−t0

, the

payment due at time tR. By the same reasoning for the rest of the entries in Column

(2), Equation (21) is thus the total units of the reference portfolio to be held at any

time t, such that the pension provision entity fully hedges financial market risk.

ˆ T

s=max{tR,t}

1

A

1

W
Re f

t0

e−h(s−tR)
s−t p

(t)
x+t−t0

ds (21)

Equation (21) is an estimate of the liabilities at time t, in terms of the units

of reference portfolio. Each unit is worth W
Re f

t at time t. To obtain the value of

liabilities, we take the portfolio’s corresponding value:

W
Re f

t ×
ˆ T

s=max{tR,t}

1

A

1

W
Re f

t0

e−h(s−tR)
s−t p

(t)
x+t−t0

ds (22)

As Ξ(h, F, t, x) = 1
A

W
Re f
t

W
Re f
t0

e−h(t−tR) by definition, we can substitute it into Equa-

tion (22) to get

Lt := Ξ(h∗, F, t, x)

ˆ T

s=max{tR,t}
exp(−h∗ (s, θ)× (s− t))× . . .

s−t p
(t)
x+t−t0

ds (23)

Equation (23) is identical to Equation (18).

When there is longevity risk, the Best Replicating Portfolio is identical to col-

umn (2) of Table 16, but this best estimate may not necessarily provide the exact

cash flow to meet the annuity provider’s contractual obligations because the real-

ized survival probability may deviate from its conditional expectation made at time

t, which then triggers the provider’s default.

C Delta Method

We apply the Delta Method (Theorem 5.5.4 of Casella and Berger, 2002) to

estimate the variance of the CELs, which is used to compute their confidence in-

tervals.

Consider the function g(x, y) =
(

x
y

) 1
γ−1 − 1. By the definition of Equation

(11), CEL = g
(
U
(
ΞGSA

)
,U

(
ΞDVA

))
. We estimate the CEL by plugging the ex-

pected utility into g(.), g
(
E0

[
U
(
ΞGSA

)]
, E0

[
U
(
ΞDVA

)])
. Theorem 5.5.24 of

Casella and Berger (2002) suggests the following estimate for its variance:
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Var
{

g
(
E0

[
U
(
ΞGSA

)]
, . . . = g2

xVar
(
U
(
ΞGSA

))
+g2

yVar
(
U
(
ΞDVA

))
+ . . .

E0

[
U
(
ΞDVA

)])}
2gxgycov

(
U
(
ΞGSA

)
,U

(
ΞDVA

))
(24)

gx = gx

(
E0

[
U
(
ΞGSA

)]
, E0

[
U
(
ΞDVA

)])

gy = gy

(
E0

[
U
(
ΞGSA

)]
, E0

[
U
(
ΞDVA

)])

gx and gy denote the first partial derivative of g(.) with respect to x and to y

respectively. Var
(
U
(
ΞK

))
for K ∈ {GSA, DVA} and cov

(
U
(
ΞGSA

)
,U

(
ΞDVA

))

are estimated by the sample variance and sample covariance.
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